13.若規(guī)定E={a1,a2,…,a10}的子集{at1,at2,…,ak}為E的第k個(gè)子集,其中$k={2^{{t_1}-1}}+{2^{{t_2}-1}}+…+{2^{{t_m}-1}}$,則E的第211個(gè)子集是{a1,a2,a5,a7,a8}.

分析 根據(jù)題意,分別討論2n的取值,通過(guò)討論計(jì)算n的可能取值,即可得答案.

解答 解:∵27=128<211,而28=256>211,
∴E的第211個(gè)子集包含a8,
此時(shí)211-128=83,
∵26=64<83,27=128>83,
∴E的第211個(gè)子集包含a7,
此時(shí)83-64=19,
∵24=16<19,25=32>19,
∴E的第211個(gè)子集包含a5,
此時(shí)19-16=3
∵21<3,22=4>3,
∴E的第211個(gè)子集包含a2
此時(shí)3-2=1,20=1,
∴E的第211個(gè)子集包含a1
∴E的第211個(gè)子集是{a1,a2,a5,a7,a8};
故答案為:{a1,a2,a5,a7,a8}.

點(diǎn)評(píng) 本題主要考查了與集合有關(guān)的信息題,理解條件的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,$\frac{{a}_{1}+1}{2}$+$\frac{{a}_{2}+1}{3}$+…+$\frac{{a}_{n}+1}{n+1}$=2n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試比較$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{n}{{a}_{n}}$與2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)$f(x)=|{x+\sqrt{a}}|-|{x-\sqrt{1-a}}$|.
(I)當(dāng)a=1時(shí),解不等式:f(x)≥$\frac{1}{2}$;
(II)若對(duì)任意a∈[0,1],不等式f(x)≥b解集不為空集,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow a$與$\overrightarrow b$為單位向量,滿足$|\overrightarrow a-3\overrightarrow b|=\sqrt{13}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≥1}\\{y≥0}\end{array}\right.$,則3x+5y的最大值為( 。
A.12B.9C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.根據(jù)如圖所示的偽代碼,最后輸出的結(jié)果是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知$({a+b+c})({sinA+sinB-sinC})=({2+\sqrt{3}})asinB$.
(1)求角C的大。
(2)若b=8,c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知m,n表示兩條不同的直線,α,β表示兩個(gè)不同的平面,則下列四個(gè)命題中,所有正確命題的序號(hào)為②③
①若m⊥n,n?α,則m⊥α;            
②若α∥β,n?α,則n∥β;
③若m⊥α,m∥β,則α⊥β;            
④若m∥α,n?α,則m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性并說(shuō)明理由;
(3)當(dāng)x∈(n,a-2)時(shí),函數(shù)f(x)的值域?yàn)椋?,+∞),求實(shí)數(shù)n,a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案