設(shè)f(x)=
x2-1
x2+1
,求:
(1)f(
b
a
);
(2)f(
a
b
).
考點:函數(shù)的值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)將x換成
b
a
,f(
b
a
)=
(
b
a
)2-1
(
b
a
)2+1
=
b2-a2
b2+a2
;
(2))將x換成
a
b
,f(
a
b
)=
(
a
b
)2-1
(
a
b
)2+1
=
a2-b2
a2+b2
解答: 解:(1)f(
b
a
)=
(
b
a
)2-1
(
b
a
)2+1
=
b2-a2
b2+a2
;
(2)f(
a
b
)=
(
a
b
)2-1
(
a
b
)2+1
=
a2-b2
a2+b2
點評:本題考查了函數(shù)的值的求法,代入化簡即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若全集U=R,集合A={x|-3≤x≤1},A∪B={x|-3≤x≤2},則B∩∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n表示兩條不同的直線,α、β表示兩個不同的平面,則下列命題中不正確的是(  )
A、m⊥α,m⊥β,則α∥β
B、m∥n,m⊥α,則n⊥α
C、m⊥α,n⊥α,則m∥n
D、m∥α,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項和Tn;
(3)若
3
2
m2+m≤bn,對所有n∈N+都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<b<c,函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c)的零點在區(qū)間( 。┥希
A、(-∞,a),(a,b)
B、(a,b),(b,c)
C、(a,c),(c,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,曲線y=x2-6x+5與坐標(biāo)軸的交點都在圓C上.
(Ⅰ)求圓的方程;
(Ⅱ)求過點(2,4)的直線被該圓截得的弦長最小時的直線方程以及最小弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

錢大姐常說“好貨不便宜”,她這句話的意思是:“好貨”是“不便宜”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
2x-x2
=kx-2k+2有兩個不同的實數(shù)根,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=2.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
3
,x,y),則x+y=
 

查看答案和解析>>

同步練習(xí)冊答案