若數列滿足:對于,都有(常數),則稱數列是公差為的準等差數列.如:若 則是公差為的準等差數列.
(1)求上述準等差數列的前項的和;
(2)設數列滿足:,對于,都有.求證:為準等差數列,并求其通項公式;
(3)設(2)中的數列的前項和為,試研究:是否存在實數,使得數列有連續(xù)的兩項都等于.若存在,請求出的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
在y=2x,y=log2x,y=x2,y=cos2x這四個函數中,當0<x1<x2<1,使f>恒成立的函數的個數是 ( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
已知函數f(x)=ln(ex+a)(a>0)
(1)求函數y=f(x)的反函數y=f-1(x)及f(x)的導數f′(x).
(2)假設對任意x∈[ln(3a),ln(4a)].不等式|m-f-1(x)|lnf′(x)<0成立.求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
等差數列{an}中,a1+a2+a3=-24,a18+a19+a20=78,則此數列前20項和等于 ( )
A.160 B.180 C. 200 D.220
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com