考點:數(shù)學歸納法,利用導數(shù)研究函數(shù)的極值
專題:綜合題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:(Ⅰ)令g(x)=lnx-x+1,求導數(shù),證明x>1時,g(x)<g(1)=0,即lnx-x+1<0,即可證明當x>1時,f(x)>1;
(Ⅱ)用數(shù)學歸納法證明2nlnan≥1即可.
解答:
證明:(Ⅰ)令g(x)=lnx-x+1,則g′(x)=
當0<x<1時,g′(x)>0,∴函數(shù)y=g(x)在0<x<1時為增函數(shù),
∴0<x<1時,g(x)<g(1)=0,即lnx-x+1<0;
當x>1時,g′(x)<0,∴函數(shù)y=g(x)在x>1時為減函數(shù),
∴x>1時,g(x)<g(1)=0,即lnx-x+1<0,
則當x>1時,0<lnx<x-1,∴
>1,即f(x)>1; …(5分)
(Ⅱ)下面用數(shù)學歸納法證明2
nlna
n≥1
。┊攏=1時,a
1=
,知
2lna1=2ln=1,∴n=1時,命題成立
ⅱ)假設n=k時,命題成立.即2
klna
k≥1
要證明n=k+1時,命題成立.即證明2
k+1lna
k+1≥1,只需證明a
k+1≥
e依題意知a
k+1=
,即證明:
≥
ef′(x)=
x>1時,有0<
<1,由(Ⅰ)可知ln
-
+1<0,
∴當x>1時,f′(x)>0,∴函數(shù)x>1時為增函數(shù)
由歸納假設2
klna
k≥1,即a
k≥
e>1,
∴f(a
k)≥f(
e)=
…(1)
依題意知a
k+1=f(a
k),故又只需證明f(
e)>
e,
構造函數(shù)h(x)=e
x-1-x
e,h′(x)=
e(
e-1-
)
e>1,由(Ⅰ)知ln
e-
e+1<0,即
e-1-
>0,∴h′(x)>0
∴函數(shù)y=h(x),x>0為增函數(shù),∴h(
)>h(0)=0,
則f(
e)=
>
e …(2),
由(1)(2)及題意知a
k+1≥
e,即2
k+1lna
k+1≥1
綜合(ⅰ)ⅱ)知,有2
nlna
n≥1成立.
點評:本題考查導數(shù)知識的運用,考查數(shù)學歸納法,考查學生分析解決問題的能力,正確運用數(shù)學歸納法是關鍵.