(本小題滿分12分)
設(shè)點(diǎn)到直線的距離與它到定點(diǎn)的距離之比為,并記點(diǎn)的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)的直線與曲線相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在由四點(diǎn)構(gòu)成的四邊形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍.
(Ⅰ);(Ⅱ)

試題分析:(Ⅰ)有題意,     ………………2分
整理得,所以曲線的方程為………………4分
(Ⅱ)顯然直線的斜率存在,所以可設(shè)直線的方程為.

設(shè)點(diǎn)的坐標(biāo)分別為
線段的中點(diǎn)為,


解得.…(1) …………7分
由韋達(dá)定理得,于是
=,   ……………8分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004857792878.png" style="vertical-align:middle;" />,所以點(diǎn)不可能在軸的右邊,
又直線,方程分別為
所以點(diǎn)在正方形內(nèi)(包括邊界)的充要條件為
 即 亦即 ………………10分
解得,……………(2)  
由(1)(2)知,直線斜率的取值范圍是………………12分
點(diǎn)評(píng):橢圓的概念和性質(zhì),仍將是今后命題的熱點(diǎn),定值、最值、范圍問(wèn)題將有所加強(qiáng);利用直線、弦長(zhǎng)、圓錐曲線三者的關(guān)系組成的各類試題是解析幾何中長(zhǎng)盛不衰的主題,其中求解與相交弦有關(guān)的綜合題仍是今后命題的重點(diǎn);與其它知識(shí)的交匯(如向量、不等式)命題將是今后高考命題的一個(gè)新的重點(diǎn)、熱點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).

(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以橢圓的中心為頂點(diǎn),右焦點(diǎn)為焦點(diǎn)的拋物線方程是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線與拋物線相交于兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若,則k的值為(   )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)分別是橢圓的左、右焦點(diǎn),過(guò)且垂直于軸的直線與橢圓交于A、B兩點(diǎn),若為正三角形,則該橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的兩焦點(diǎn)之間的距離為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,橢圓C方程為 (),點(diǎn)為橢圓C的左、右頂點(diǎn)。

(1)若橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(diǎn)(A、B不是左、右頂點(diǎn)),且滿足,求證:直線過(guò)定點(diǎn),并求出該點(diǎn)的坐標(biāo)。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列雙曲線中,漸近線方程是的是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案