(本題滿分14分)
如圖,已知橢圓
=1(
a>
b>0),
F1、
F2分別為橢圓的左、右焦點,
A為橢圓的上的頂點,直線
AF2交橢圓于另 一點
B.
(1)若∠
F1AB=90°,求橢圓的離心率;
(2)若
=2
,
·
=
,求橢圓的方程.
(1)
e=
.(2)
試題分析:解:(1)若∠
F1AB=90°,則△
AOF2為等腰直角三角形,所以有
OA=
OF2,
即
b=
c.所以
a=
c,
e=
.
(2)由題知
A(0,
b),
F1(-
c,0),
F2(
c,0),
其中,
c=
,設(shè)
B(
x,
y).
由
=2
?(
c,-
b)=2(
x-
c,
y),解得
x=
,
y=
,即
B(
,
).
將
B點坐標代入
,得
,
即
,
解得
a2=3
c2.①
又由
·
=(-
c,-
b)·(
,
)=
⇒
b2-
c2=1,
即有
a2-2
c2=1.②
由①,②解得
c2=1,
a2=3,從而有
b2=2.
所以橢圓方程為
.
點評:解決的關(guān)鍵是根據(jù)橢圓的定義以及三角形的性質(zhì)得到a,b,c的關(guān)系式,同時結(jié)合向量的數(shù)量積來秋季誒得到其方程,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)點
到直線
的距離與它到定點
的距離之比為
,并記點
的軌跡為曲線
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)
,過點
的直線
與曲線
相交于
兩點,當線段
的中點落在由四點
構(gòu)成的四邊形內(nèi)(包括邊界)時,求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如果雙曲線
上一點P到它的右焦點距離是8,那么點P到它的左焦點的距離是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,設(shè)點
、
分別是橢圓
的左、右焦點,
為橢圓
上任意一點,且
最小值為
.
(1)求橢圓
的方程;
(2)若動直線
均與橢圓
相切,且
,試探究在
軸上是否存在定點
,點
到
的距離之積恒為1?若存在,請求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的方程為
,點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足
,求點
的坐標;
(2)設(shè)直線
交橢圓
于
、
兩點,交直線
于點
.若
,證明:
為
的中點;
(3)對于橢圓
上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個交點
、
滿足
,寫出求作點
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心為坐標原點
,一個長軸端點為
,短軸端點和焦點所組成的四邊形為正方形,若直線
與
軸交于點
,與橢圓
交于不同的兩點
,且
。(14分)
(1)求橢圓
的方程;
(2)求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓C:
(a>b>0)的右焦點為F
(1,0),離心率為
,P為左頂點。
(1)求橢圓C的方程;
(2)設(shè)過點F
的直線交橢圓C于A,B兩點,若△PAB的面積為
,求直線AB的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)定點M(3,
)與拋物線
=2x上的點P的距離為
,P到拋物線準線
l的距為
,則
+
取最小值時,P點的坐標為
A.(0,0) | B.(1,) | C.(2,2) | D.(,-) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓E:
的焦點坐標為
(
),點M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過Q點引直線
與橢圓E交于
兩點,求線段
中點
的軌跡方程;
查看答案和解析>>