【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 為參數(shù)),直線 的方程為 ,以 為極點(diǎn),以 軸正半軸為極軸,建立極坐標(biāo)系,
(1)求曲線 和直線 的極坐標(biāo)方程;
(2)若直線 與曲線 交于 兩點(diǎn),求 .

【答案】
(1)解:曲線 的普通方程為 ,

的極坐標(biāo)方程為 ,

由于直線 過(guò)原點(diǎn),且傾斜角為 ,故其極坐標(biāo)為 (或


(2)解:由 得: ,故 , ,


【解析】(1)首先把圓的參數(shù)方程轉(zhuǎn)化為普通方程,進(jìn)一步轉(zhuǎn)化為極坐標(biāo)方程,再把直線方程轉(zhuǎn)化為極坐標(biāo)方程.(2)根據(jù)(1)中所得的結(jié)果,建立方程組,即可得出答案.
【考點(diǎn)精析】利用圓的參數(shù)方程對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圓的參數(shù)方程可表示為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在已知函數(shù),(其中,,)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為

(1)求的解析式;

(2)當(dāng)時(shí),求的值域;

(3)求上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)在區(qū)間上的最小值為.

(1)求;

(2)若上恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng) 時(shí),求滿足的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 在區(qū)間 上有最大值4和最小值1,
設(shè)
(Ⅰ)求 的值;
(Ⅱ)若不等式 上恒成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個(gè)人,每人至少分得1張,則下列兩個(gè)事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,在 的展開(kāi)式中,第二項(xiàng)系數(shù)是第三項(xiàng)系數(shù)的
(Ⅰ)展開(kāi)式中二項(xiàng)系數(shù)最大項(xiàng);
(Ⅱ)若 ,求① 的值;② 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

1)已知二次函數(shù),試判斷是否為定義域上的“局部奇函數(shù)”?若是,求出所有滿足的值;若不是,請(qǐng)說(shuō)明事由.

2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .直線l過(guò)點(diǎn) .
(1)若直線l與曲線C交于A,B兩點(diǎn),求 的值;
(2)求曲線C的內(nèi)接矩形的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m,n分別是先后拋擲一枚骰子所得到的點(diǎn)數(shù),則在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的情況下,方程x2+mx+n=0有實(shí)根的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案