【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
【答案】,
【解析】
試題分析:(Ⅰ)由橢圓方程可得橢圓的右焦點(diǎn)坐標(biāo)將其代入直線方程即可求得的值. (Ⅱ)將直線方程與橢圓方程聯(lián)立,消去可得關(guān)于的一元二次方程,從而可得兩根之積兩根之和.根據(jù)重心坐標(biāo)公式分別求得點(diǎn)的坐標(biāo),由題意可知,即.根據(jù)數(shù)量積公式可求得范圍.
試題解析:解:(Ⅰ)∵直線:經(jīng)過,
,得.
又,.
故直線的方程為.
(Ⅱ)設(shè),
由消去得,
∴.
由,得,
由于,故為的中點(diǎn).
由分別為的重心,可知,
設(shè)是的中點(diǎn),則,
∵原點(diǎn)在以線段為直徑的圓內(nèi),.
而,
∴,即.
又且,.的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個(gè)命題:(1)當(dāng)時(shí),單調(diào)遞減且沒有最值;(2)方程一定有實(shí)數(shù)解;(3)如果方程(為常數(shù))有解,則解得個(gè)數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號(hào)是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)的對稱性有如下結(jié)論:對于給定的函數(shù),如果對于任意的都有成立為常數(shù)),則函數(shù)關(guān)于點(diǎn)對稱.
(1)用題設(shè)中的結(jié)論證明:函數(shù)關(guān)于點(diǎn);
(2)若函數(shù)既關(guān)于點(diǎn)對稱,又關(guān)于點(diǎn)對稱,且當(dāng)時(shí),,求:①的值;
②當(dāng)時(shí),的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的值域是,有下列結(jié)論:①當(dāng)時(shí),; ②當(dāng)時(shí),;③當(dāng)時(shí),; ④當(dāng)時(shí),.其中結(jié)論正確的所有的序號(hào)是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為提高市場銷售業(yè)績,設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對“采取促銷”和“沒有采取促銷”的營銷網(wǎng)點(diǎn)各選了50個(gè),對比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長的百分點(diǎn)分成5組:,,,,,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個(gè)百分點(diǎn)及以上的營銷網(wǎng)點(diǎn)為“精英店”.
“采用促銷”的銷售網(wǎng)點(diǎn)
“不采用促銷”的銷售網(wǎng)點(diǎn)
(1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“精英店與采促銷活動(dòng)有關(guān)”;
采用促銷 | 無促銷 | 合計(jì) | |
精英店 | |||
非精英店 | |||
合計(jì) | 50 | 50 | 100 |
(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(jià)(單位:元)和日銷量(單位:件)()的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的
45.8 | 395.5 | 2413.5 | 4.6 | 21.6 |
①根據(jù)上表數(shù)據(jù)計(jì)算,的值;
②已知該公司產(chǎn)品的成本為10元/件,促銷費(fèi)用平均5元/件,根據(jù)所求出的回歸模型,分析售價(jià)定為多少時(shí)日利潤可以達(dá)到最大.
附①:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
附②:對應(yīng)一組數(shù)據(jù),
其回歸直線的斜率和截距的最小二乘法估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,OA、OB、OC所在直線兩兩垂直,且,CA與平面AOB所成角為,D是AB中點(diǎn),三棱錐的體積是.
(1)求三棱錐的高;
(2)在線段CA上取一點(diǎn)E,當(dāng)E在什么位置時(shí),異面直線BE與OD所成的角為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足且,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是( )
A.在邊上存在點(diǎn),使得在翻折過程中,滿足平面
B.存在,使得在翻折過程中的某個(gè)位置,滿足平面平面
C.若,當(dāng)二面角為直二面角時(shí),
D.在翻折過程中,四棱錐體積的最大值記為,的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,點(diǎn)A為該橢圓的左頂點(diǎn),過右焦點(diǎn)的直線l與橢圓交于B,C兩點(diǎn),當(dāng)軸時(shí),三角形ABC的面積為18.
求橢圓的方程;
如圖,當(dāng)動(dòng)直線BC斜率存在且不為0時(shí),直線分別交直線AB,AC于點(diǎn)M、N,問x軸上是否存在點(diǎn)P,使得,若存在求出點(diǎn)P的坐標(biāo);若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com