(本小題共12分)
已知函數(shù),
(1)若對于定義域內的恒成立,求實數(shù)的取值范圍;
(2)設有兩個極值點,,求證:;
(3)設若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍.

(1),(2)  (
,,且 ()--

 (
 ,
 即
(Ⅲ)

解析試題分析:(1) ,設
時,,當時,
,
(2)  (
解法(一),,且 ()--

 (
 
 即
解法(二),,且 (
   由的極值點可得

(Ⅲ),
所以上為增函數(shù),,所以,得
,設 (
,由恒成立,
① 若,則所以遞減,此時不符合;
時,,遞減,此時不符合;
時,,若,則在區(qū)間)上遞減,此時不符合;
綜合得,即實數(shù)的取值范圍為
考點:本題考查了導函數(shù)的運用
點評:導數(shù)本身是個解決問題的工具,是高考必考內容之一,高考往往結合

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),問是否存在實數(shù)使上取最大值3,最小值-29,若存在,求出的值;不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
若函數(shù)的定義域為,其中a、b為任
意正實數(shù),且a<b。
(1)當A=時,研究的單調性(不必證明);
(2)寫出的單調區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調性的定義證明:當時,在區(qū)間上為減函數(shù);
(3)當,函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分12分)設函數(shù)
(Ⅰ)求函數(shù)的單調遞增區(qū)間;
(II)若關于的方程在區(qū)間內恰有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)是定義在上的偶函數(shù),已知當時,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調遞增區(qū)間;
(3)求在區(qū)間上的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),曲線在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)過點能作幾條直線與曲線相切?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

同步練習冊答案