若F1、F2是雙曲線=1的兩個焦點,P在雙曲線上,且|PF1|·|PF2|=32,求∠F1PF2的大小.

答案:
解析:

  解:由雙曲線的對稱性,可設(shè)點P在第一象限,由雙曲線的方程,知a=3,b=4.∴c=5.

  由雙曲線的定義,得|PF1|-|PF2|=2a=6.

  上式兩邊平方,得|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+64=100,

  由余弦定理,得

  cos∠F1PF2=0.

  ∴∠F1PF2=90°.

  分析:一般地,求一個角的大小,通常要解這個角所在的三角形.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同焦點,點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同的左、右焦點,點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同焦點,點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是( 。
A.3x±
2
y=0
B.
2
x±3y=0
C.3x±
7
y=0
D.
7
x±3y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若F1、F2是雙曲線=1的兩個焦點,P在雙曲線上,且|PF1|·|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市高二(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

若F1,F(xiàn)2是雙曲線與橢圓的共同焦點,點P是兩曲線的一個交點,且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案