對任意θ,sin3θ=msinθsin(θ+
π
3
)sin(θ+
3
)恒成立,則實數(shù)m的值為
 
考點:兩角和與差的正弦函數(shù),三角函數(shù)恒等式的證明
專題:三角函數(shù)的求值
分析:在所給的等式中,不妨令θ=
π
2
,可得-1=m•
1
2
•(-
1
2
),由此求得m的值.
解答: 解:∵sin3θ=msinθsin(θ+
π
3
)sin(θ+
3
)恒成立,不妨令θ=
π
2
,可得sin
2
=msin
π
2
sin
6
sin
6

即-1=m•
1
2
•(-
1
2
),求得m=4,
故答案為:4.
點評:本題主要考查三角恒等式,函數(shù)的恒成立問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知α∈(0,2π),且sinα<0,cosα>0,則角α的取值范圍是( 。
A、(0,
π
2
)
B、(
π
2
,π)
C、(π,
2
)
D、(
2
,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
2-i
1+2i
,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<a<1,復數(shù)z滿足z(1+i)=a+2i,則|z|的取值范圍是( 。
A、(
2
,
10
2
)
B、(4,5)
C、(
1
2
,
5
2
)
D、(
2
,
5
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z=(z-1)•i,則復數(shù)z的模為( 。
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形的三個頂點是A(-5,0),B(3,-3),C(0,2),求BC邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式4x2-4x-15≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=0,a2=2,且對任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5;
(2)設cn=(an+1-an) qn-1(q≠0,n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設雙曲線
x2
4
-
y2
9
=1
,F(xiàn)1,F(xiàn)2是其兩個焦點,點M在雙曲線上.
(1)若∠F1MF2=
π
2
,求△F1MF2的面積;
(2)若∠F1MF2=
π
3
,求△F1MF2的面積是多少?若∠F1MF2=120°時,△F1MF2的面積是多少?

查看答案和解析>>

同步練習冊答案