19.已知圓O:x2+y2=4,圓M:(x-8)2+(y-6)2=4,在圓M上任取一點P,向圓O作切線PA,PB,切點為A,B,則$\overrightarrow{OA}•\overrightarrow{OB}$的最大值為( 。
A.$-\frac{5}{2}$B.$-\frac{9}{2}$C.$\frac{3}{2}$D.$-\frac{7}{2}$

分析 設∠AOP=α,則可求cos∠AOB=$\frac{8}{O{P}^{2}}$-1,利用$\overrightarrow{OA}•\overrightarrow{OB}$=|$\overrightarrow{OA}$||$\overrightarrow{OB}$|cos∠AOB=$\frac{32}{O{P}^{2}}$-4,結合|OP|min=10-2=8,即可計算得解$\overrightarrow{OA}•\overrightarrow{OB}$的最大值.

解答 解:設∠AOP=α,
則∠AOP=∠BOP,∠AOB=2α,
∴cos∠AOB=2cos2α-1=$\frac{8}{O{P}^{2}}$-1,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=|$\overrightarrow{OA}$||$\overrightarrow{OB}$|cos∠AOB=$\frac{32}{O{P}^{2}}$-4,
∵|OP|min=10-2=8,
∴($\overrightarrow{OA}•\overrightarrow{OB}$)max=-$\frac{7}{2}$.
故選:D.

點評 本題考查圓的方程,考查直線與圓的位置關系,考查向量知識的運用,利用直線與圓相切,圓心到直線的距離等于半徑是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.復數(shù)z=1+i+i2+i3的值是(  )
A.-1B.0C.1D.i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-2|x-a|.
(1)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(2)若a=$\frac{1}{2}$,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)當a>0時,若對任意的x∈(0,+∞),不等式f(x-1)≤2f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知3a+a3=123,[a]表示不超過a的最大整數(shù),則[a]等于4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某園林基地培育了一種新觀賞植物,經(jīng)過一年的生長發(fā)育,技術人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從高度在80厘米以上以上(含80厘米)的植株中隨機抽取2株,求所抽取的2株中至少有一株高度在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)=tan(ax+$\frac{π}{4}$),(a∈R且a≠0)的周期是( 。
A.$\frac{π}{a}$B.$\frac{π}{|a|}$C.$\frac{2π}{a}$D.$\frac{2π}{|a|}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知不等式x2-3ax+b>0的解集為{x|x<1或x>2}.
(Ⅰ)求 a,b的值;
(Ⅱ)解不等式(x-b)(x-m)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知m,n是兩條不同的直線,σ,β是兩個不同的平面,則下列命題中正確的是( 。
A.若σ⊥β,σ∩β=m,n⊥m,則n⊥σ或n⊥β
B.若m不垂直于σ,則m不可能垂直于σ內(nèi)的無數(shù)條直線
C.若σ∩β=m,m∥n,且n?σ,n?β,則n∥σ且n∥β
D.若σ⊥β,m∥n,n⊥β,則m∥σ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,⊙O1與⊙O2外切于點P,從⊙O1上點A作的切線AB,切點為B,連AP(不過O1)并延長與⊙O2交于點C.
(1)求證:AO1∥CO2
(2)若$\frac{AC}{AB}=\frac{{\sqrt{6}}}{2}$,求⊙O1的半徑與⊙O2的半徑之比.

查看答案和解析>>

同步練習冊答案