14.某園林基地培育了一種新觀賞植物,經(jīng)過(guò)一年的生長(zhǎng)發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從高度在80厘米以上以上(含80厘米)的植株中隨機(jī)抽取2株,求所抽取的2株中至少有一株高度在[90,100]內(nèi)的概率.

分析 (1)結(jié)合圖象求出樣本容量,從而求出x,y的值即可;
(2)根據(jù)古典概型的計(jì)算公式計(jì)算即可.

解答 解:(1)由題意得:
樣本容量n=$\frac{8}{0.016×10}$=50,
y=$\frac{2}{50×10}$=0.004,
x=0.100-0.004-0.010-0.016-0.040=0.030;
(2)由題意得:
高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,
在這7株中隨機(jī)抽取2株,共${C}_{7}^{2}$=21種方法,
其中2株的高度都不在[90,100]內(nèi)的情況有${C}_{5}^{2}$=10種,
故所抽取的2株中至少有一株高度在[90,100]內(nèi)的概率是1-$\frac{10}{21}$=$\frac{11}{21}$.

點(diǎn)評(píng) 本題考查了莖葉圖和直方圖,考查古典概率問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列a1=1,a5=13,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2016=( 。
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知x∈[0,π],使sinx≥$\frac{1}{2}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1),且當(dāng)x∈[-1,0]時(shí),f(x)=-x2+1.如果函數(shù)g(x)=f(x)-a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知X~B(n,p),且E(X)=6,D(X)=$\frac{9}{2}$,則在(${\sqrt{x}$+$\frac{1}{{\root{3}{x}}}}$)n的展開式中,有理項(xiàng)共有5項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知圓O:x2+y2=4,圓M:(x-8)2+(y-6)2=4,在圓M上任取一點(diǎn)P,向圓O作切線PA,PB,切點(diǎn)為A,B,則$\overrightarrow{OA}•\overrightarrow{OB}$的最大值為(  )
A.$-\frac{5}{2}$B.$-\frac{9}{2}$C.$\frac{3}{2}$D.$-\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
其中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問(wèn)題:
(i)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
(ii)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為,$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若Cn+13=Cn3+Cn4,則n的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C1和曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是曲線C1上一動(dòng)點(diǎn),過(guò)點(diǎn)P作線段OP的垂線交曲線C2于點(diǎn)Q,求線段PQ長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案