分析 (1)由題意可得2an-an+1+1=0即an+1+1=2(an+1),再由等比數(shù)列的定義和通項(xiàng)公式,計(jì)算即可得到所求;
(2)運(yùn)用等比數(shù)列的求和公式,結(jié)合不等式的性質(zhì)即可得證.
解答 解:(1)點(diǎn)P(2an,an+1)(n∈N*)在直線x-y+1=0上,
即有2an-an+1+1=0即an+1+1=2(an+1),
故數(shù)列{an+1}是首項(xiàng)為2,公比為2的等比數(shù)列.
即有an+1=2n,即an=2n-1;
(2)證明:由于$\frac{1}{{a}_{n}+1}$=($\frac{1}{2}$)n.
則f(n)=$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{n}+1}$=$\frac{1}{2}$+($\frac{1}{2}$)2+…+($\frac{1}{2}$)n
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-($\frac{1}{2}$)n<1.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)的求法:注意運(yùn)用構(gòu)造數(shù)列,同時(shí)考查等比數(shù)列的求和公式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{T_6}{T_4},\frac{{{T_{12}}}}{T_6}$ | B. | $\frac{T_8}{T_4},\frac{{{T_{12}}}}{T_8}$ | ||
C. | $\frac{{{T_{10}}}}{T_4},\frac{{{T_{12}}}}{{{T_{10}}}}$ | D. | $\frac{{{T_{16}}}}{T_4},\frac{{{T_{12}}}}{{{T_{16}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com