【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中點.
(Ⅰ)證明:直線CE∥平面PAB;
(Ⅱ)點M在棱PC 上,且直線BM與底面ABCD所成角為45°,求二面角M﹣AB﹣D的余弦值.
【答案】(Ⅰ)證明:取PA的中點F,連接EF,BF,因為E是PD的中點,
所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥ AD,
∴BCEF是平行四邊形,可得CE∥BF,BF平面PAB,CF平面PAB,
∴直線CE∥平面PAB;
(Ⅱ)解:四棱錐P﹣ABCD中,
側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,
∠BAD=∠ABC=90°,E是PD的中點.
取AD的中點O,M在底面ABCD上的射影N在OC上,設(shè)AD=2,則AB=BC=1,OP= ,
∴∠PCO=60°,直線BM與底面ABCD所成角為45°,
可得:BN=MN,CN= MN,BC=1,
可得:1+ BN2=BN2 , BN= ,MN= ,
作NQ⊥AB于Q,連接MQ,
所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ=
= ,
二面角M﹣AB﹣D的余弦值為: = .
【解析】(Ⅰ)取PA的中點F,連接EF,BF,通過證明CE∥BF,利用直線與平面平行的判定定理證明即可.
(Ⅱ)利用已知條件轉(zhuǎn)化求解M到底面的距離,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.
【考點精析】掌握直線與平面平行的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體ABCD中,若AB=CD= ,AC=BD=2,AD=BC= ,則直線AB與CD所成角的余弦值為( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD如圖1中,AD= ,AB=2,E為AB中點,將△ADE沿DE折起到△PDE,所得四棱錐P﹣BCDE如圖2所示.
(Ⅰ)若點M為PC中點,求證:BM∥平面PDE;
(Ⅱ)當(dāng)平面PDE⊥平面BCDE時,求三棱錐E﹣PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)設(shè)是函數(shù)的四個不同的零點,問是否存在實數(shù),使得其中三個零點成等差數(shù)列?若存在,求出所有的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求異面直線A1B與AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,,,
以AC的中點O為球心,AC為直徑的球面交PD于點M,交PC于點N.
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的大;
(3)求點N到平面ACM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個月的空氣質(zhì)量越來越好
D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com