分析 以C為原點,CA為x軸,在平面ABC中過作AC的垂線為y軸,CC1為z軸,建立空間直角坐標系,利用向量法能求出異面直線A1E與AF所成角的余弦值.
解答 解:以C為原點,CA為x軸,在平面ABC中過作AC的垂線為y軸,CC1為z軸,建立空間直角坐標系,
∵在三棱柱ABC-A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,
E,F(xiàn)分別是棱BB1,CC${\;}_{{1}_{\;}}$上的點,且BE=B1E,C1F=$\frac{1}{3}$CC1,
∴A1(4,0,6),E(2,2$\sqrt{3}$,3),F(xiàn)(0,0,4),A(4,0,0),
$\overrightarrow{{A}_{1}E}$=(-2,2$\sqrt{3}$,-3),$\overrightarrow{AF}$=(-4,0,4),
設(shè)異面直線A1E與AF所成角所成角為θ,
則cosθ=|$\frac{|\overrightarrow{{A}_{1}E}•\overrightarrow{AF}|}{|\overrightarrow{{A}_{1}E}||\overrightarrow{AF}|}$=$\frac{4}{4\sqrt{2}×5}=\frac{\sqrt{2}}{10}$.
∴異面直線A1E與AF所成角的余弦值為$\frac{\sqrt{2}}{10}$;
故答案為:$\frac{\sqrt{2}}{10}$.
點評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | ±6 | C. | 5 | D. | ±5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com