2.已知函數(shù)f(x)的定義域為(-1,1),則函數(shù)f(2x+1)的定義域為(-1,0).

分析 根據(jù)復合函數(shù)定義域之間的關(guān)系進行求解即可.

解答 解:∵函數(shù)f(x)的定義域為(-1,1),
∴由-1<2x+1<1,得-1<x<0,
則函數(shù)f(2x+1)的定義域為(-1,0).
故答案為:(-1,0)

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.根據(jù)復合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)f(x)為偶函數(shù),在[0,+∞)是單調(diào)函數(shù),則滿足f(2x)=f($\frac{x+1}{x+4}$)的所有x之和為( 。
A.8B.9C.-8D.-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,在三棱柱ABC-A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1,CC1上的點,且BE=B1E,C1F=$\frac{1}{3}$CC1,則異面直線A1E與AF
所成角的余弦值為$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=1,an+1=3an+1
(1)證明{an+$\frac{1}{2}$}是等比數(shù)列,并求{an}的通項公式
(2)若bn=(2n-1)(2an+1),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=x|x|+bx+c,給出以下四個命題:①當c=0時,有f(-x)=-f(x)成立②當b=0,c>0時,方程f(x)=0,只有一個實數(shù)根③函數(shù)y=f(x)的圖象關(guān)于點(0,c)對稱 ④當x>0時;函數(shù)f(x)=x|x|+bx+c,f(x)的最小值是c-$\frac{^{2}}{2}$.其中正確的命題的序號是①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)M(x)定義為M(x)=f(x+1)-f(x),利潤函數(shù)p(x)邊際利潤函數(shù)定義為M1(x)=p(x+1)-p(x),某公司最多生產(chǎn) 100 臺報系統(tǒng)裝置,生產(chǎn)x臺的收入函數(shù)為R(x)=3000x-20x2(單位:元),其成本函數(shù)為C(x)=500x+4000x(單位:元),利潤是收入與成本之差.
(1)求利潤函數(shù)p(x)及邊際利潤函數(shù)M1(x);
(2)利潤函數(shù)p(x)與邊際利潤函數(shù)M1(x)是否具有相等的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}2(1-x),0≤x≤1\\ x-1,1<x≤2\end{array}$如果對任意的n∈N*,定義fn(x)=$\underbrace{f\{f[{f…f(x)}]\}}_{n個f}$,例如:f2(x)=f(f(x)),那么f2016(2)的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.復數(shù)z與復數(shù)i(1-2i)互為共軛復數(shù),則z=(  )
A.-2+iB.-2-iC.2-iD.2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{1}{10}x+2,x>10}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(10,20).

查看答案和解析>>

同步練習冊答案