函數(shù)y=sin4x+cos4x的單調(diào)遞增區(qū)間是    
【答案】分析:利用同角三角函數(shù)基本關(guān)系及倍角公式對函數(shù)解析式進(jìn)行化簡整理,進(jìn)而根據(jù)余弦函數(shù)的單調(diào)性求得函數(shù)的單調(diào)遞增區(qū)間.
解答:解:y=sin4x+cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-=1-=
∵函數(shù)f(x)=cos4x的增區(qū)間為2kπ-π≤4x≤2kπ,即-≤x≤,
∴函數(shù)y=sin4x+cos4x的單調(diào)遞增區(qū)間是[](k∈Z)
故答案為[,](k∈Z)
點(diǎn)評:本題主要考查了同角三角函數(shù),二倍角公式,三角函數(shù)的單調(diào)性.考查了考生對三角函數(shù)基礎(chǔ)知識的把握和理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z}.
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
⑤函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù).
其中真命題的序號是
 
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z
|.
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
④把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
⑤函數(shù)y=sin(x-
π
2
)
在(0,π)上是減函數(shù)
其中真命題的序號是
 
((寫出所有真命題的編號))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④若cos2α=
1
2
,則α=2kπ±
π
6
(k∈Z);
⑤函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù).
其中真命題的序號是
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)給出以下4個(gè)命題:其中真命題的個(gè)數(shù)是( 。
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z}
;
③把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
個(gè)單位得到函數(shù)y=3sin2x的圖象;
④函數(shù)y=sin(x-
π
2
)
在區(qū)間[0,π]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有4個(gè)命題:①函數(shù)y=sin4x-cos4x的最小正周期是π;
②在同一坐標(biāo)系中,函數(shù)y=sinx與y=x的圖象有三個(gè)公共點(diǎn);
③把函數(shù)y=3sin(2x+
π
6
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù).
其中真命題的序號是
(填上所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案