【題目】某校開設(shè)的校本課程分別有人文科學(xué)、自然科學(xué)、藝術(shù)體育三個課程類別,每種課程類別開設(shè)課程數(shù)及學(xué)分設(shè)定如下表所示:

人文科學(xué)類

自然科學(xué)類

藝術(shù)體育類

課程門數(shù)

4

4

2

每門課程學(xué)分

2

3

1

學(xué)校要求學(xué)生在高中三年內(nèi)從中選修3門課程,假設(shè)學(xué)生選修每門課程的機會均等.
(Ⅰ)甲至少選1門藝術(shù)體育類課程,同時乙至多選1門自然科學(xué)類課程的概率為多少?
(Ⅱ)求甲選的3門課程正好是7學(xué)分的概率;
(Ⅲ)設(shè)甲所選3門課程的學(xué)分?jǐn)?shù)為X,寫出X的分布列,并求出X的數(shù)學(xué)期望.

【答案】解:(Ⅰ)設(shè)甲至少選一門藝術(shù)體育類課程的事件為A, ; 乙至多選一門自然科學(xué)類課程的事件為B, ;
則所求概率為
(Ⅱ)甲選課程的學(xué)分可能為(3,3,1),(3,2,2),
所以甲選課程的學(xué)分正好為7學(xué)分的概率為
(Ⅲ)X的可能取值為4,5,6,7,8,9 ; ;
所以隨機變量X的分布列為:

X

4

5

6

7

8

9

P

所以隨機變量X的數(shù)學(xué)期望
【解析】(I)利用互斥事件與互相獨立事件的概率計算公式即可得出.(II)甲選課程的學(xué)分可能為(3,3,1),(3,2,2),利用互斥事件與互相獨立事件的概率計算公式即可得出.(III)X的可能取值為4,5,6,7,8,9.利用互斥事件與互相獨立事件的概率計算公式即可得出.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣ax+lnx,a∈R.
(1)當(dāng)a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2﹣f(x),是否存在實數(shù)a,當(dāng)x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項為1的單調(diào)遞增的等比數(shù)列,且滿足a3 , 成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3(anan+1)(n∈N*),求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小學(xué)隨機抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項活動,則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線l的極坐標(biāo)方程;
(2)點P的極坐標(biāo)為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(
A.8
B.13
C.21
D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足:f(x+1)=f(x﹣1),且當(dāng)﹣1<x<0時,f(x)=2x﹣1,則f(log220)等于(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

同步練習(xí)冊答案