分析 (1)去掉絕對(duì)值符號(hào),將函數(shù)化為分段函數(shù)的形式,解出值域即可;
(2)求出f(x)的最小值,問題轉(zhuǎn)化為t2-$\frac{7}{2}$t≤-3,解出即可.
解答 解:(1)函數(shù)f(x)=|x-2|-|x-5|.
當(dāng)x≤2時(shí),f(x)=2-x-(5-x)=-3,
當(dāng)2<x<5時(shí),f(x)=x-2-(5-x)=2x-7∈(-3,3),
當(dāng)x≥5時(shí),f(x)=x-2-(x-5)=3.
綜上函數(shù)f(x)的值域[-3,3].
(2)函數(shù)f(x)的最小值是-3,
若?x∈R,使得f(x)≥t2-$\frac{7}{2}$t恒成立,
即有f(x)min≥t2-$\frac{7}{2}$t,
即有t2-$\frac{7}{2}$t≤-3,解得:$\frac{3}{2}$≤t≤2,
則實(shí)數(shù)t的取值范圍為[$\frac{3}{2}$,2].
點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,2) | B. | (-∞,-2) | C. | (-2,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{6}$) | C. | $\sqrt{2}$f($\frac{π}{4}$)<2f($\frac{π}{6}$) | D. | f($\frac{π}{4}$)>$\frac{1}{2}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,$\root{3}{12}$) | C. | (1,$\root{3}{4}$) | D. | (2,$\root{3}{10}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A≤B≤C | B. | A≤C≤B | C. | B≤C≤A | D. | C≤B≤A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com