【題目】下列結(jié)論正確的個數(shù)是(
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3

【答案】C
【解析】解:①命題“所有的四邊形都是矩形”是全稱命題,故①錯誤;
②命題“x∈R,x2+2<0”是全稱命題,故②正確;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題,故③正確.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解全稱命題的相關(guān)知識,掌握全稱命題,它的否定,;全稱命題的否定是特稱命題,以及對特稱命題的理解,了解特稱命題,,它的否定;特稱命題的否定是全稱命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面 平面,點上,

(Ⅰ)求證: ;

(Ⅱ)若二面角的余弦值為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017高考特別強調(diào)了要增加對數(shù)學(xué)文化的考查,為此某校高三年級特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對整個高三年級的學(xué)生進行了測試.現(xiàn)從這些學(xué)生中隨機抽取了50名學(xué)生的成績,按照成績?yōu)?/span> ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).

(1)求頻率分布直方圖中的的值,并估計所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)若高三年級共有2000名學(xué)生,試估計高三學(xué)生中這次測試成績不低于70分的人數(shù);

(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商品在近30天內(nèi)每件的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系p=
該商品的日銷售量Q(件)時間t(天)的函數(shù)關(guān)系Q=﹣t+40(0<t≤30,t∈N*
求該商品的日銷售額的最大值,并指出日銷售額最大一天是30天中的第幾天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,為正方形,為菱形,.

(Ⅰ)求證:平面平面;

(Ⅱ)若中點,是二面角的平面角,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,M為DD1的中點,O為四邊形ABCD的中心,P為棱A1B1上任一點,則異面直線OP與MA所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定映射f:(x,y)→(x+2y,2x﹣y),在映射f下(3,1)的原象為(
A.(1,3)
B.(3,1)
C.(1,1)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=4x,且f(0)=1.
(1)求二次函數(shù)f(x)的解析式.
(2)求函數(shù)g(x)=( fx的單調(diào)增區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[1525),[25,35)的被調(diào)查者中各隨機選取2人進行追蹤調(diào)查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車輛限行的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案