11.已知函數(shù)f(x)=x2-alnx,a∈R.
(Ⅰ)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a>0時(shí),函數(shù)f(x)的最小值記為g(a),證明:g(a)≤1.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為2+$\frac{a}{{x}^{2}}$>0在(1,+∞)恒成立,求出a的范圍即可;
(Ⅱ)求出f′(x),通過(guò)討論a的范圍,判斷函數(shù)的單調(diào)區(qū)間即可;
(Ⅲ)求出g(a)=f($\sqrt{\frac{a}{2}}$)=$\frac{a}{2}$-$\frac{a}{2}$ln$\frac{a}{2}$,(a>0),令t=$\frac{a}{2}$,則t>0,則m(t)=t-tlnt,根據(jù)函數(shù)的單調(diào)性,求出m(t)≤1即可.

解答 解:(Ⅰ)函數(shù)f(x)=x2-alnx,定義域是(0,+∞),
f′(x)=2x-$\frac{a}{x}$,f″(x)=2+$\frac{a}{{x}^{2}}$
若f′(x)在區(qū)間(1,+∞)上單調(diào)遞增,
則2+$\frac{a}{{x}^{2}}$>0在(1,+∞)恒成立,
∴a>(-2x2max
∴a>-2;
(Ⅱ)f′(x)=2x-$\frac{a}{x}$=$\frac{{2x}^{2}-a}{x}$,
a≤0時(shí),f′(x)>0,f(x)在(0,+∞)遞增,
a>0時(shí),令f′(x)>0,解得:x>$\sqrt{\frac{a}{2}}$,
令f′(x)<0,解得:0<x<$\sqrt{\frac{a}{2}}$,
∴f(x)在(0,$\sqrt{\frac{a}{2}}$)遞減,在($\sqrt{\frac{a}{2}}$,+∞)遞增;
證明:(Ⅲ)由(Ⅱ)得g(a)=f($\sqrt{\frac{a}{2}}$)=$\frac{a}{2}$-$\frac{a}{2}$ln$\frac{a}{2}$,(a>0),
令t=$\frac{a}{2}$,則t>0,則m(t)=t-tlnt,m′(t)=-lnt,
令m′(t)>0,解得:0<t<1,令m′(t)<0,解得:t>1,
∴m(t)在(0,1)遞增,在(1,+∞)遞減,
m(t)max=m(1)=1,
∴m(t)≤1,
∴g(a)≤1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,且PA⊥平面ABCD,PA=AB=AD=2,∠BAD=60°.
(Ⅰ)證明:平面PBD⊥平面PAC;
(Ⅱ)求平面APD與平面PBC所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,正方形ABCD與正方形ABEF構(gòu)成一個(gè)$\frac{π}{3}$的二面角,將△BEF繞BE旋轉(zhuǎn)一周.在旋轉(zhuǎn)過(guò)程中,( 。
A.直線AC必與平面BEF相交
B.直線BF與直線CD恒成$\frac{π}{4}$角
C.直線BF與平面ABCD所成角的范圍是[$\frac{π}{12}$,$\frac{π}{2}$]
D.平面BEF與平面ABCD所成的二面角必不小于$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知變量x與變量y有如表對(duì)應(yīng)數(shù)據(jù):
 x 1 2 3 4
 y $\frac{1}{2}$$\frac{3}{2}$ 
且y對(duì)x呈線性相關(guān)關(guān)系,求y對(duì)x的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=1nx-a(x-1)2的單調(diào)遞增區(qū)間是(0,$\frac{1+\sqrt{5}}{2}$)
(1)求實(shí)數(shù)a的值;
(2)證明:當(dāng)x>1時(shí),f(x)<x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求定義域:y=$\sqrt{lo{g}_{\frac{1}{2}}x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,AC⊥BC,CD⊥AB,DE⊥BC,垂足分別為C、D、E.若AC=6,DE=4,則CD的長(zhǎng)為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)叫做單位分?jǐn)?shù),我們可以把1拆分成多個(gè)不同的單位分?jǐn)?shù)之和.例如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,…,依此拆分法可得1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$+$\frac{1}{182}$,其中m,n∈N*,則m-n=( 。
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,在三棱錐A-BCD中,AB⊥底面BCD,BC⊥CD,AB=BC=CD=2.該三棱錐外接球的表面積等于12π.

查看答案和解析>>

同步練習(xí)冊(cè)答案