16.求定義域:y=$\sqrt{lo{g}_{\frac{1}{2}}x}$.

分析 根據(jù)二次根式的被開方數(shù)大于或等于0,結(jié)合對數(shù)函數(shù)的性質(zhì),即可求出該函數(shù)的定義域.

解答 解:∵函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}x}$,
∴${log}_{\frac{1}{2}}$x≥0,
解得0<x≤1,
∴函數(shù)y的定義域是(0,1].

點(diǎn)評 本題考查了二次根式的被開方數(shù)大于或等于0以及對數(shù)函數(shù)的性質(zhì)與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為了解重慶某社區(qū)居民的家庭年收入和年支出的關(guān)系,隨機(jī)調(diào)查了5戶家庭,得到統(tǒng)計(jì)數(shù)據(jù)表,根據(jù)下表可得回歸直線方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.5$,$\widehata=\overline y-\widehatb\overline x$,據(jù)此估計(jì),該社區(qū)一戶收入為18萬元家庭年支出為( 。
收入x(萬元)68101214
支出y(萬元)678910
A.15萬元B.14萬元C.13萬元D.12萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)由以上數(shù)據(jù)經(jīng)計(jì)算得:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{1}{2}$,求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx-3在x=1處取得極值,且在點(diǎn)(0,-3)處的切線與直線2x+y=0平行,設(shè)兩數(shù)g(x)=xf(x)+4x.
(Ⅰ)求函數(shù)g(x)的解析式,并求g(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)g(x)在x∈[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-alnx,a∈R.
(Ⅰ)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a>0時(shí),函數(shù)f(x)的最小值記為g(a),證明:g(a)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax-1
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小值是-1,最小正周期為2π,其圖象經(jīng)過點(diǎn)M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知f(α+β)=-$\frac{3}{5}$,f(α-β)=$\frac{4}{5}$,求tanαtanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=n2(n∈N*),則①a3=5;②通項(xiàng)公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知?jiǎng)狱c(diǎn)M與兩點(diǎn)P1($\frac{r}{2}$,0),P2(2r,0)的距離之比為$\frac{1}{2}$,r>0.
(1)求動(dòng)點(diǎn)M的軌跡Γ的方程;
(2)已知菱形ABCD的一個(gè)內(nèi)角為60°,頂點(diǎn)A,B在直線l:y=2x+3上,頂點(diǎn)C,D在Γ上,當(dāng)直線l與Γ無公共點(diǎn)時(shí),求菱形ABCD的面積S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案