12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{lnx-1,x>0}\end{array}\right.$,則不等式f(x)>0的解集為{x|x>e或x<0}.

分析 分別求出各個(gè)區(qū)間上的x的范圍,取并集即可.

解答 解:x≤0時(shí),解x2-2x>0,解得:x<0,
x>0時(shí),解不等式lnx-1>0,解得:x>e,
故不等式的解集是{x|x<0或x>e},
故答案為:{x|x<0或x>e}.

點(diǎn)評 本題考查了分段函數(shù)問題,考查對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我國延遲退休年齡將借鑒國外經(jīng)驗(yàn),擬對不同群體采取差別措施,并以“小步慢走”的方式實(shí)施.現(xiàn)對某市工薪階層關(guān)于“延遲退休年齡”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們月收入的頻數(shù)分布及對“延遲退休年齡”反對的人數(shù)如下表.
月收入(元)[1500,2500)[2500,3500)[3500,4500)[4500,5500)[5500,6500)[6500,7500)
頻數(shù)510141164
反對人數(shù)4811621
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)估算月收入高于5500的調(diào)查對象中,持反對態(tài)度的概率;
(Ⅱ)若對月收入在[1500,2500),[2500,3500)的被調(diào)查對象中各隨機(jī)選取兩人進(jìn)行跟蹤調(diào)查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.實(shí)數(shù)a分別取什么數(shù)值時(shí),復(fù)數(shù)z=$\frac{{a}^{2}-a-6}{a+3}$+(a2-2a-15)i(a∈R)對應(yīng)的點(diǎn)Z.
(1)在復(fù)平面的實(shí)軸上方;
(2)在直線x+y+7=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(sin2ωx,cos2ωx)(ω>0),$\overrightarrow$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.作出f(x)=2sin($\frac{x}{2}+\frac{π}{3}$)的圖象,并指出振幅、周期、初相、最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足$\frac{{S}_{n}}{{a}_{n}}$=$\frac{1}{3}$n+r.
(1)若a1=2,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,設(shè)bn=$\frac{1}{{a}_{2n-1}}$(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Tn.求證:Tn≥$\frac{2n}{3n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}是公差不為0的等差數(shù)列,其前n項(xiàng)的和為Sn,若a${\;}_{2}^{2}$+a${\;}_{3}^{2}$=a${\;}_{4}^{2}$+a${\;}_{5}^{2}$,S7=7,求等差數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知cos($\frac{5π}{12}$+α)=$\frac{1}{3}$,其中α為第三象限角,求sin(α-$\frac{π}{12}$)+sin(α-$\frac{7π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.實(shí)軸長是10,焦點(diǎn)坐標(biāo)分別為(0,-$\sqrt{29}$),(0,$\sqrt{29}$)的雙曲線方程為( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{25}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{25}$=1D.$\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊答案