已知數(shù)列{an}的各項(xiàng)都是正數(shù),若an2≤an-an+1對于一切n∈N*都成立.
(1)證明{an}中的任一項(xiàng)都小于1; 
(2)探究an
1
n
的大小,并證明你的結(jié)論.
考點(diǎn):數(shù)列與不等式的綜合
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)由
a
2
n
an-an+1
,可得an+1an-
a
2
n
,由于an>0,an+1>0,可得an-
a
2
n
>0
解出即可.
(2)由(1)可知:0<an<1.得到a2a1-
a
2
1
1
2
.猜想:an
1
n
(n≥2)
.用數(shù)學(xué)歸納法證明即可.
解答: 解:(1)由
a
2
n
an-an+1
,
an+1an-
a
2
n
,
∵an>0,an+1>0,
an-
a
2
n
>0

解得0<an<1.
故{an}中的任一項(xiàng)都小于1.
(2)由(1)可知:0<an<1.
得到a2a1-
a
2
1
=-(a1-
1
2
)2+
1
4
1
4
1
2

猜想:an
1
n
(n≥2)

下面用數(shù)學(xué)歸納法證明:
(i)當(dāng)n=2時(shí),成立.
(ii)假設(shè)當(dāng)n=k≥2時(shí)成立,即ak
1
k
1
2

那么當(dāng)n=k+1時(shí),
ak+1ak-
a
2
k
=-(ak-
1
2
)2+
1
4
<-(
1
k
-
1
2
)2+
1
4
=
1
k
-
1
k2
=
k-1
k2
k-1
k2-1
=
1
k+1

∴當(dāng)n=k=1時(shí),猜想成立.
綜上(i)(ii)可知:an
1
n
對于?n∈N*都成立.
點(diǎn)評:本題考查了數(shù)學(xué)歸納法、猜想與歸納的能力、不等式的性質(zhì)、配方法、二次函數(shù)的性質(zhì)等基礎(chǔ)知識與基本技能方法,考查了推理能力和計(jì)算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和記為Sn,已知有a1=1,a3=5
(1)求通項(xiàng)an;
(2)若Sn=400,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a2=
1
3
,a5=
1
81

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log9an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直四棱柱ABCD-A1B1C1D1中,已知底面ABCD是邊長為1的正方形,側(cè)棱C1C垂直于底面ABCD,且C1C=2,點(diǎn)P是側(cè)棱C1C的中點(diǎn).
(1)求證:AC1∥平面PBD;
(2)求證:A1P⊥平面PBD;
(3)求三棱錐A1-BDC1的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AD⊥BC于D,CE⊥AB于E,AD、EC交于點(diǎn)F.求證
CD
AD
=
FD
BD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的兩根.
①求α+β的值.
②求tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

調(diào)查某桑場采桑員和輔助工患桑毛蟲皮炎病的情況,結(jié)果如下表:
采桑 不采桑 合計(jì)
患者人數(shù) 18 12 30
健康人數(shù) 5 78 83
合計(jì) 23 90 113
利用2×2列聯(lián)表的獨(dú)立性檢驗(yàn)估計(jì),“患桑毛蟲皮炎病與采!笔欠裼嘘P(guān)?認(rèn)為兩者有關(guān)系會犯錯(cuò)誤的概率是多少?附表:
P(K≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①對于數(shù)據(jù),求線性回歸直線方程,并計(jì)算x=4時(shí)y的估計(jì)值
x 0 1 2 3
y 1 3 5 7
②根據(jù)下列2×2聯(lián)表,使說明飲水與得病是否有關(guān)?
得病 不得病 總計(jì)
干凈水 10 70 80
不干凈水 10 30 40
總計(jì) 20 100 120
附表(如下)
p(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=n2+λn(n=1,2,3,…),若數(shù)列{an}是遞增數(shù)列,則實(shí)數(shù)λ的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案