函數(shù)f(x)=
3
sin2x+cos2x
( 。
分析:將函數(shù)解析式利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由正弦函數(shù)在(0,
π
2
)上單調(diào)遞增列出關(guān)于x的不等式,求出不等式的解集得到x的范圍,即可得到f(x)在(0,
π
6
)單調(diào)遞增.
解答:解:f(x)=
3
sin2x+cos2x=2(
3
2
sin2x+
1
2
cos2x)=2sin(2x+
π
6
),
由正弦函數(shù)在(0,
π
2
)上單調(diào)遞增,故0<2x+
π
6
π
2

解得:0<x<
π
6
,
則f(x)在(0,
π
6
)單調(diào)遞增.
故選D
點(diǎn)評(píng):此題考查了兩角和與差的正弦函數(shù)公式,以及正弦函數(shù)的單調(diào)性,利用三角函數(shù)的恒等變換將函數(shù)解析式化為一個(gè)角的正弦函數(shù)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin2(
π2
x)+1
,則使f(x+c)=-f(x)恒成立的最小正數(shù)c為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=3sin2(2x+
π
3
)+5
,則f′(
π
6
)
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=
3
sin2ωx-2sin2ωx
的最小正周期為3π.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2ωx+2cos2ωx(ω>0)
的最小正周期為π.
(I) 求ω的值;
(II)求函數(shù)f(x)在區(qū)間[0,
π
2
]
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=
3
sin2
ωx
2
+sin
ωx
2
cos
ωx
2
(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案