【題目】已知圓以原點(diǎn)為圓心,且圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)若直線:與圓交于、兩點(diǎn),分別過(guò)、兩點(diǎn)作直線的垂線,交軸于、兩點(diǎn),求線段的長(zhǎng).
【答案】(Ⅰ); (Ⅱ).
【解析】
(Ⅰ)化直線方程為一般式,利用點(diǎn)到直線的距離公式求出圓的半徑,則圓的方程可求;
(Ⅱ)由點(diǎn)到直線距離公式求出O到AB的距離,結(jié)合垂徑定理求出AB,過(guò)C點(diǎn)作CE⊥BD垂足為E,可得CE=AB=2.結(jié)合yx+2的傾斜角為30°,求解三角形可得線段CD的長(zhǎng).
(Ⅰ)把直線化為一般式,得,
原點(diǎn)到直線的距離,
∴圓的半徑,∴圓的方程為.
(Ⅱ)依題意畫(huà)出示意圖,如圖.
點(diǎn)到直線:的距離,
∵圓的半徑為2,∴,
過(guò)點(diǎn)作垂足為,∴,
又∵的傾斜角為,∴,
∴,∴線段的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),命題,;命題.
(1)若為真命題,求的取值范圍;
(2)若為真命題,求的取值范圍;
(3)若“”為假命題,“”為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點(diǎn), , 是線段的中點(diǎn).若經(jīng)過(guò)點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿(mǎn)足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿(mǎn)足|s﹣r|≤|t﹣r|,那么稱(chēng)s比t更靠近r.當(dāng)a≥2且x≥1時(shí),試比較 和ex﹣1+a哪個(gè)更靠近lnx,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)高二學(xué)生的期末理科數(shù)學(xué)測(cè)試的數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)服從正態(tài)分布,現(xiàn)從甲校100分以上(含100分)的200份試卷中用系統(tǒng)抽樣中等距抽樣的方法抽取了20份試卷來(lái)分析(試卷編號(hào)為001,002,…,200),統(tǒng)計(jì)如下:
注:表中試卷編號(hào)
(1)寫(xiě)出表中試卷得分為144分的試卷編號(hào)(寫(xiě)出具體數(shù)據(jù)即可);
(2)該市又從乙校中也用與甲校同樣的抽樣方法抽取了20份試卷,將甲乙兩校這40份試卷的得分制作了莖葉圖(如圖)在甲、乙兩校這40份學(xué)生的試卷中,從成績(jī)?cè)?/span>140分以上(含140分)的學(xué)生中任意抽取3人,該3人在全市排名前15名的人數(shù)記為,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量X服從正態(tài)分布則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下表為“五點(diǎn)法”繪制函數(shù)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中).
0 | 2 | 0 | 0 |
(Ⅰ) 請(qǐng)寫(xiě)出函數(shù)的最小正周期和解析式;
(Ⅱ) 求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ) 求函數(shù)在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) (且)是定義域?yàn)镽的奇函數(shù).
(Ⅰ)求t的值;
(Ⅱ)若函數(shù)的圖象過(guò)點(diǎn),是否存在正數(shù)m,使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com