【題目】某市對高二學(xué)生的期末理科數(shù)學(xué)測試的數(shù)據(jù)統(tǒng)計顯示,全市10000名學(xué)生的成績服從正態(tài)分布,現(xiàn)從甲校100分以上(100)200份試卷中用系統(tǒng)抽樣中等距抽樣的方法抽取了20份試卷來分析(試卷編號為001,002,…,200),統(tǒng)計如下:

注:表中試卷編號

(1)寫出表中試卷得分為144分的試卷編號(寫出具體數(shù)據(jù)即可);

(2)該市又從乙校中也用與甲校同樣的抽樣方法抽取了20份試卷,將甲乙兩校這40份試卷的得分制作了莖葉圖(如圖)在甲、乙兩校這40份學(xué)生的試卷中,從成績在140分以上(140)的學(xué)生中任意抽取3人,該3人在全市排名前15名的人數(shù)記為,求隨機變量的分布列和期望.

:若隨機變量X服從正態(tài)分布

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)系統(tǒng)抽樣中等距抽樣的方法結(jié)合表格中數(shù)據(jù)可得試卷得分為分的試卷編號;(2)根據(jù)正態(tài)分布概率可得分以上才能進入前,根據(jù)莖葉圖可知這人中成績在分以上含的有人,而成績在分以上含的有人,的取值為,利用超幾何分布概率公式得出分布列,從而可求出數(shù)學(xué)期望.

試題解析:(1)因為份試卷中用系統(tǒng)抽樣中等距抽樣的方法抽取了份試卷,所以相鄰兩份試卷編號相差為,所以試卷得分為分的試卷編號.

(2),根據(jù)正態(tài)分布可知:,名的成績?nèi)吭?/span>分以上,(含),根據(jù)莖葉圖可知這人中成績在分以上含的有人,而成績在分以上含的有,的取值為,,的分布列為

因此.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是以AB為直徑的圓O上異于A,B的點,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點,記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的奇數(shù)項成等差數(shù)列,偶數(shù)項成等比數(shù)列,且公差和公比都是2,若對滿足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立. (I)求數(shù)列{an}的通項公式;
(II)若bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點. (Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點N是直線CD上的動點,MN與面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓以原點為圓心,且圓與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)若直線與圓交于、兩點,分別過、兩點作直線的垂線,交軸于兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù) b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣∞,3)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記函數(shù)的定義域為, )的定義域為.

(1)求;

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知yf(x)是定義域為R的奇函數(shù),當(dāng)x∈[0,+∞)時,f(x)=x2-2x.

(1)寫出函數(shù)yf(x)的解析式

(2)若方程f(x)=a恰有3個不同的解,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項和為Sn , 且有Sn=2bn﹣1.
(1)求{an}、{bn}的通項公式;
(2)若cn=anbn , {cn}的前n項和為Tn , 求Tn

查看答案和解析>>

同步練習(xí)冊答案