如圖,在海岸線一側C處有一個美麗的小島,某旅游公司為方便游客,在上設立了A、B兩個報名點,滿足A、B、C中任意兩點間的距離為10千米。公司擬按以下思路運作:先將A、B兩處游客分別乘車集中到AB之間的中轉點D處(點D異于A、B兩點),然后乘同一艘游輪前往C島。據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費2元,游輪每千米耗費12元。設∠,每批游客從各自報名點到C島所需運輸成本S元。

⑴寫出S關于的函數(shù)表達式,并指出的取值范圍;
⑵問中轉點D距離A處多遠時,S最小?

(1);(2)千米.

解析試題分析:(1)首先發(fā)現(xiàn)運輸成本與路程有關,根據(jù)題意總運輸成本為,下面就是想辦法把表示出來,由于,因此在中,利用正弦定理就可以用表示出,而,因此表達式易求.(2)由(1)求出了的函數(shù),問題變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/97/6/urnmb.png" style="vertical-align:middle;" />為何值時,函數(shù)取得最小值,可以用導數(shù)的知識加以解決,即求出,令,使值一定函數(shù)的最值點,只是我們要考慮下是最大還是最小值而已,這個應該是很好解決的.
試題解析:(1)由題在中,
由正弦定理得,得
,        3分

        7分
(2),令,得,        10分
時,,當時,,∴當時,取得最小值.    12分
此時,,
∴中轉站距千米時,運輸成本最。        14分
考點:(1)正弦定理;(2)函數(shù)的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,且成等比數(shù)列.
(1)若,,求的值;
(2)求角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角A、B、C的對邊分別為,已知向量,,且。
(1)求角的大小;  
(2)若,求面積的最大值。(12分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)若,求函數(shù)的最大值和最小值,并寫出相應的x的值;
(II)設的內(nèi)角、的對邊分別為、、,滿足,求、的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,海上有兩個小島相距10,船O將保持觀望A島和B島所成的視角為,現(xiàn)從船O上派下一只小艇沿方向駛至處進行作業(yè),且.設。

(1)用分別表示,并求出的取值范圍;
(2)晚上小艇在處發(fā)出一道強烈的光線照射A島,B島至光線的距離為,求BD的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中,角的對邊分別為,且滿足.
(I)求角的大。
(Ⅱ)設,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,邊、、分別是角、、的對邊,且滿足
(1)求;
(2)若,,求邊的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,向量,函數(shù).
(1)求的最小正周期;
(2)已知分別為內(nèi)角的對邊,為銳角,,且恰是上的最大值,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,角A,BC的對邊分別為a,bc.角A,B,C成等差數(shù)列.
(1)求cos B的值;
(2)邊a,b,c成等比數(shù)列,求sin Asin C的值.

查看答案和解析>>

同步練習冊答案