【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2(cos2θ+3sin2θ)=12,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).
(1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;
(2)求曲線C的內(nèi)接矩形周長(zhǎng)的最大值.
【答案】(1)(2)16
【解析】
(1)利用極坐標(biāo)轉(zhuǎn)化為直角坐標(biāo)的公式,求得曲線的直角坐標(biāo)方程.求得的直角坐標(biāo),由此判斷在直線上,求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入曲線的直角坐標(biāo)方程,化簡(jiǎn)后寫(xiě)出韋達(dá)定理,結(jié)合直線參數(shù)的幾何意義,求得的值.
(2)求得橢圓內(nèi)接矩形周長(zhǎng)的表達(dá)式,結(jié)合三角函數(shù)最值的求法,求得周長(zhǎng)的最大值.
(1)曲線C的極坐標(biāo)方程為ρ2(cos2θ+3sin2θ)=12,轉(zhuǎn)換為直角坐標(biāo)方程為.
點(diǎn)P的極坐標(biāo)為(2,π),轉(zhuǎn)換為直角坐標(biāo)為(﹣2,0)由于點(diǎn)P(﹣2,0)在直線l上,
所以直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)化為(t為參數(shù)),
所以代入曲線的方程為,
整理得,
所以|PM||PN|=|t1t2|=4.
(2)不妨設(shè)Q(),(),
所以該矩形的周長(zhǎng)為4()=16sin().
當(dāng)時(shí),矩形的周長(zhǎng)的最大值為16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體B-ACDE中,AB⊥AC,AB=4,AC=3,DC⊥平面ABC,EA⊥平面ABC,點(diǎn)M在線段BC上,且AM=.
(1)證明:AM⊥平面BCD;
(2)若點(diǎn)F為線段BE的中點(diǎn),且三棱錐F-BCD的體積為1,求CD的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽弦圖(圖1)是取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形.圖2是由弦圖變化得到,它是由八個(gè)全等的直角三角形和中間的一個(gè)小正方形拼接而成.現(xiàn)隨機(jī)向圖2中大正方形的內(nèi)部投擲一枚飛鏢,若直角三角形的直角邊長(zhǎng)分別為2和3,則飛鏢投中小正方形(陰影)區(qū)域的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線:的右焦點(diǎn)為,半焦距,點(diǎn)到右準(zhǔn)線的距離為,過(guò)點(diǎn)作雙曲線的兩條互相垂直的弦,,設(shè),的中點(diǎn)分別為,.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)證明:直線必過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x),若關(guān)于x的方程f2(x)﹣af(x)+a﹣a2=0有四個(gè)不等的實(shí)數(shù)根,則a的取值范圍是( )
A.B.(﹣∞,﹣1)∪[1,+∞)
C.(﹣∞,﹣1)∪{1}D.(﹣1,0)∪{1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在R上的兩個(gè)周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當(dāng)時(shí),,,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程有8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,直線經(jīng)過(guò)點(diǎn),直線經(jīng)過(guò)點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).
(Ⅰ)若分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;
(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;
(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點(diǎn).
(1)證明:;
(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線與直線所成的角最小時(shí),求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com