【題目】已知函數(shù),
,其中
是自然常數(shù).
(1)判斷函數(shù)在
內(nèi)零點的個數(shù),并說明理由;
(2),
,使得不等式
成立,試求實數(shù)
的取值范圍.
【答案】(1) 存在1個零點;理由見解析.
(2) .
【解析】分析:(1)在
內(nèi)零點的個數(shù)1,求得
的導(dǎo)數(shù),判斷符號,可得單調(diào)性,再由函數(shù)零點存在定理,即可得到結(jié)論;
(2)由題意可得,即
,分別求得
在
上的單調(diào)性,可得最值,解
的不等式,即可得到所求范圍.
詳解:
(1)函數(shù)在
上的零點的個數(shù)為1,理由如下:
因為,所以
,
因為,所以
,所以函數(shù)
在
上單調(diào)遞增.
因為,
,
根據(jù)函數(shù)零點存在性定理得函數(shù)在
上存在1個零點.
(2)因為不等式等價于
,
所以,
,使得不等式
成立,等價于
,即
,
當(dāng)時,
,故
在區(qū)間
上單調(diào)遞增,
所以當(dāng)時,
取得最小值
,又
,
當(dāng)時,
,
,
,所以
,
故函數(shù)在區(qū)間
上單調(diào)遞減.
因此,當(dāng)時,
取得最大值
,所以
,所以
,
所以實數(shù)的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學(xué)生進行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計如下表:
學(xué)生 | 1號 | 2號 | 3號 | 4號 | 5號 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(1)從統(tǒng)計數(shù)據(jù)看,甲、乙兩個班哪個班成績更穩(wěn)定(用數(shù)字特征說明);
(2)在本次訓(xùn)練中,從兩班中分別任選一個同學(xué),比較兩人的投中次數(shù),求甲班同學(xué)投中次數(shù)高于乙班同學(xué)投中次數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,D是AE的中點,C是線段BE上的一點,且
,
,將
沿AB折起使得二面角
是直二面角.
(l)求證:CD平面PAB;
(2)求直線PE與平面PCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在
軸上,中心在坐標原點,拋物線
的焦點在
軸上,頂點在坐標原點,在
、
上各取兩個點,將其坐標記錄于表格中:
(1)求、
的標準方程;
(2)已知定點,
為拋物線
上的一點,其橫坐標為
,拋物線
在點
處的切線交橢圓
于
、
兩點,求
面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為正實數(shù).
(1)求證:≥a+b;
(2)利用(1)的結(jié)論求函數(shù)y=(0<x<1)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( )
A. 在數(shù)列|中,
由此歸納出
的通項公式
B. 由平面三角形的性質(zhì),推測空間四面體性質(zhì)
C. 某校高二共有10個班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人
D. 兩條直線平行,同旁內(nèi)角互補,如果和
是兩條平行直線的同旁內(nèi)角,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com