分析 當(dāng)x>0時,$x+\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,當(dāng)且僅當(dāng)x=$\frac{4}{x}$時取等號,由此能求出實數(shù)a的取值范圍.
解答 解:∵不等式$a<x+\frac{4}{x}$對?x∈(0,+∞)恒成立,
又當(dāng)x>0時,$x+\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,
當(dāng)且僅當(dāng)x=$\frac{4}{x}$時取等號,
∴實數(shù)a的取值范圍是(-∞,4).
故答案為:(-∞,4).
點評 本題考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意均值不等式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | [-1,0) | C. | (0,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,+∞) | B. | (-∞,0)∪(2,+∞) | C. | (2,3) | D. | (-2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com