已知函數(shù)f(x)=a+bsin2x+ccos2x的圖象經(jīng)過點(diǎn)A(0,1)、B(,1).
(1)當(dāng)a<1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)已知x∈[0,],且f(x)的最大值為2,求f()的值.
【答案】分析:(1)先利用條件求出參數(shù)a,b,然后將三角函數(shù)進(jìn)行化簡,然后利用三角函數(shù)的圖象研究函數(shù)的單調(diào)增區(qū)間.
(2)當(dāng)x∈[0,],通過三角函數(shù)的圖象結(jié)合f(x)的最大值,確定參數(shù)a,進(jìn)而求值.
解答:解:(1)由得:即b=c=1-a,所以
因?yàn)閍<1,所以1-a>0,所以當(dāng),即時(shí),f(x)為增函數(shù).
∴函數(shù)f(x)的單調(diào)增區(qū)間.(6分)
(2)x∈[0,],,即
當(dāng)1-a>0,即a<1時(shí),得a=-1;
當(dāng)1-a<0,即a>1時(shí),,無解;
當(dāng)1-a=0,即a=1時(shí),矛盾.

,所以.(12分)
點(diǎn)評:本題考查三角函數(shù)的恒等變換以及三角函數(shù)的圖象和性質(zhì),熟練掌握三角函數(shù)的圖象和性質(zhì)是解決三角函數(shù)的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案