已知函數(shù)f(x)=
2x-1+a,x≥1
ax+a,x<1
,記集合A={(x,y)|y=f(x),x∈R},實(shí)數(shù)集為R,映射g:R→A的對(duì)應(yīng)法則是x→(x,f(x)),若這個(gè)映射是一一映射,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由x≥1時(shí),f(x)=2x-1+a,是增函數(shù),又映射g是一一映射,則函數(shù)f(x)在R上是增函數(shù),則有a>0,且21-1+a≥a+a,解出即可.
解答: 解:由于f(x)=
2x-1+a,x≥1
ax+a,x<1
,
則x≥1時(shí),f(x)=2x-1+a,是增函數(shù),
又映射g是一一映射,
則函數(shù)f(x)在R上是增函數(shù),
則有a>0,且21-1+a≥a+a,解得0<a≤1.
故答案為:(0,1].
點(diǎn)評(píng):本題考查分段函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性及運(yùn)用,注意分界點(diǎn),屬于中檔題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-1,0,1,2},B={-1,2,3},則A∩B=( 。
A、{-1,0,1,2,3}
B、{-1,2}
C、{0,1,3}
D、{x|-1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-2)2+y2=4,從直線l:x=-2上一動(dòng)點(diǎn)P引圓C的兩條切線,切點(diǎn)分別為A,B,PC交AB于T.
(1)求點(diǎn)T的軌跡方程;
(2)求S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,已知cosA=-
1
3
,cosC=
2
sinB.
(1)求sinC的值.
(2)若a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙、丁、戊5人隨機(jī)站成一排,則甲、乙相鄰,甲、丙不相鄰的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,兩中線AD、BE互相垂直,求
tanC
tanA
+
tanC
tanB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將大小形狀相同的4個(gè)紅球和2個(gè)白球放入如圖所示的九宮格中,每格至多放一個(gè),要求相鄰方格的小球不同色(有公共邊的兩個(gè)方格為相鄰),則所有不同的放法種數(shù)為( 。
A、32B、48C、50D、54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+1|+|x-1|;
(1)分別寫(xiě)出當(dāng)x∈(-∞,-1)、x∈(-1,1)、x∈(1,+∞)時(shí)的函數(shù)解析式;
(2)將函數(shù)f(x)=|x+1|+|x-1|寫(xiě)成分段函數(shù);
(3)畫(huà)出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)圓P過(guò)點(diǎn)A(0,1)且與直線y=-1相切,O是坐標(biāo)原點(diǎn),動(dòng)圓P的圓心軌跡曲線C.
(1)求曲線C的方程;
(2)過(guò)A作直線L交曲線C于D,E兩點(diǎn),求弦DE的中點(diǎn)M的軌跡方程;
(3)在(2)中求△ODE的重心G的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案