已知函數(shù)。
(1)當(dāng)時(shí),求曲線在處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求在區(qū)間上的最小值。
(1);(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。(3);
解析試題分析:(1)把代入函數(shù)解析式中,求出函數(shù)的導(dǎo)數(shù),把代入導(dǎo)函數(shù)中去即得切線的斜率;(2)求出導(dǎo)函數(shù),導(dǎo)函數(shù)中含有參數(shù),要對(duì)進(jìn)行討論,然后令導(dǎo)函數(shù)大于0得增區(qū)間,令導(dǎo)函數(shù)小于0得減區(qū)間;(3)利用(2)中求得的單調(diào)區(qū)間來求函數(shù)的最值即可,但要對(duì)在范圍內(nèi)進(jìn)行討論;
試題解析:解:(1)當(dāng)時(shí),, 2分
故曲線在處切線的斜率為。 4分
(2)。 6分
①當(dāng)時(shí),由于,故。
所以,的單調(diào)遞減區(qū)間為。 8分
②當(dāng)時(shí),由,得。
在區(qū)間上,,在區(qū)間上,。
所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。 10分
綜上,當(dāng)時(shí),的單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。 11分
(3)根據(jù)(2)得到的結(jié)論,當(dāng),即時(shí),在區(qū)間上的最小值為,。 13分
當(dāng),即時(shí),在區(qū)間上的最小值為,。
綜上,當(dāng)時(shí),在區(qū)間上的最小值為,當(dāng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若函數(shù)的最小值為,令,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的最小值是,在一個(gè)周期內(nèi)圖象最高點(diǎn)與最低點(diǎn)橫坐標(biāo)差是,又:圖象過點(diǎn),
求(1)函數(shù)解析式,
(2)函數(shù)的最大值、以及達(dá)到最大值時(shí)的集合;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性;
(3)當(dāng)時(shí),函數(shù),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是定義在上的奇函數(shù),且,若時(shí),有
(1)證明在上是增函數(shù);
(2)解不等式
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在上的奇函數(shù),當(dāng)時(shí),
(1)求函數(shù)在上的解析式;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)g(x)=+1,h(x)=,x∈(-3,a],其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)·h(x).
(1)求函數(shù)f(x)的表達(dá)式,并求其定義域;
(2)當(dāng)a=時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lg x,則滿足f(x)>0
的x的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com