已知函數(shù),,.
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若函數(shù)的最小值為,令,求的取值范圍.
(1);(2).
解析試題分析:(1)取絕對(duì)值,化簡(jiǎn),配方法求最小值;(2)取絕對(duì)值,然后對(duì)的范圍經(jīng)行分類討論(注意以兩二次函數(shù)的對(duì)稱軸為界進(jìn)行分類),最后求出最小值表達(dá)式,利用圖象(配方法、函數(shù)性質(zhì)法也可以)求最值。
試題解析:(Ⅰ)=,
由,可知;
由,可知。
所以。 5分
(Ⅱ)
1)當(dāng),; 7分
2)當(dāng),; 9分
3)當(dāng),; 11分
所以,圖解得:。 15分
考點(diǎn):(1)分段函數(shù)最值問(wèn)題;(2)含參數(shù)分段函數(shù)討論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
用表示自然數(shù)的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,,10的因數(shù)有1,2,5,10,,那么 ; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-.
(1)求證:f(x)為奇函數(shù); (2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)當(dāng)時(shí),求曲線在處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在其定義域上為奇函數(shù).
⑴求m的值;
⑵若關(guān)于x的不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=x+的圖象為C1,C1關(guān)于點(diǎn)A(2,1)對(duì)稱的圖象為C2,C2對(duì)應(yīng)的函數(shù)為g(x).
(1)求g(x)的解析式;
(2)若直線y=m與C2只有一個(gè)交點(diǎn),求m的值和交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
二次函數(shù)的部分對(duì)應(yīng)值如下表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
y | 6 | 0 | -4 | -6 | -6 | -4 | 0 | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com