若數(shù)列{an}滿足a1=1,a2=2,an=
an-1
an-2
(n≥3且n∈N*),則a17=( 。
A、1
B、2
C、
1
2
D、2-987
分析:本題考查的是歸納推理,處理的方法是:先逐一求出數(shù)列中各項的值,分析歸納各項之間的變化規(guī)律,大膽猜想,解決問題.
解答:解:∵a1=1,a2=2,an=
an-1
an-2
(n≥3且n∈N*),
∴a1=1,
a2=2,
a3=2,
a4=1,
a5=
1
2
,
a6=
1
2

a7=1,
a8=2,
a9=2,

即an的值以6為周期重復(fù)出現(xiàn),故a17=a5=
1
2

故選C
點(diǎn)評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•煙臺二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數(shù)m的最小取值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習(xí)冊答案