已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是(  )
A.3x+4y-1=0B.3x+4y+1=0或3x+4y-9=0
C.3x+4y+9=0D.3x+4y-1=0或3x+4y+9=0
∵直線l1與直線l2:3x+4y-6=0平行,
∴設(shè)直線l1為3x+4y+m=0,
將圓的方程化為x2+(y+1)2=1,得到圓心坐標為(0,-1),半徑r=1,
又直線l1與圓x2+y2+2y=0相切,
∴圓心到3x+4y+m=0的距離d=r,即
|m-4|
5
=1,
解得:m=9或m=-1,
則直線l1的方程為3x+4y-1=0或3x+4y+9=0.
故選D
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•長春一模)已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是
3x+4y-1=0或3x+4y+9=0
3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1與圓x2+y2+2y=0相切,與直線l2:3x+4y-6=0平行且距離最大,則直線l1的方程是
3x+4y+9=0
3x+4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省紹興一中高二(上)期中數(shù)學試卷(解析版) 題型:選擇題

已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是( )
A.3x+4y-1=0
B.3x+4y+1=0或3x+4y-9=0
C.3x+4y+9=0
D.3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省珠海市高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:選擇題

已知直線l1與圓x2+y2+2y=0相切,且與直線l2:3x+4y-6=0平行,則直線l1的方程是( )
A.3x+4y-1=0
B.3x+4y+1=0或3x+4y-9=0
C.3x+4y+9=0
D.3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

同步練習冊答案