設等差數(shù)列{an}的前n項和為Sn,則S3,S6-S3,S9-S6,S12-S9,成等差數(shù)列.類比以上結論有:設等比數(shù)列{bn}的前n項積為Tn,則T3
 
,
 
 
成等比數(shù)列.
分析:由于等差數(shù)列與等比數(shù)列具有類比性,且等差數(shù)列與和差有關,等比數(shù)列與積商有關,因此當?shù)炔顢?shù)列依次每4項之和仍成等差數(shù)列時,類比到等比數(shù)列為依次每4項的積的商成等比數(shù)列.下面證明該結論的正確性.
解答:解:設等比數(shù)列{bn}的公比為q,首項為b1,則T3=b13q3,T6=b16q15,T9=b19q36,T12=b112q66,∴
T6
T3
=
b
3
1
q12
,
T9
T6
=
b
3
1
q21
,
T12
T9
=
b
3
1
q30
,成等比數(shù)列,故答案為
T6
T3
,
T9
T6
T12
T9
點評:本題主要考查類比推理,類比推理一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(或猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案