分析 先求f′(x)=3x2+2x+m,而f(x)在R上是單調(diào)函數(shù),所以二次函數(shù)f′(x)≥0在R上恒成立,所以△≤0,這樣即可求出實(shí)數(shù)m的范圍.
解答 解:f′(x)=3x2+2x+m;
∵f(x)在R上是單調(diào)函數(shù);
∴f′(x)≥0對(duì)于x∈R恒成立;
∴△=4-12m≤0;
∴m≥$\frac{1}{3}$,
∴實(shí)數(shù)m的取值范圍為[$\frac{1}{3}$,+∞),
故答案為:[$\frac{1}{3}$,+∞).
點(diǎn)評(píng) 考查函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號(hào)的關(guān)系,熟悉二次函數(shù)的圖象,一元二次不等式的解集為R時(shí)判別式△的取值情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{2014}^{5}$ | B. | $C_{2013}^5$ | C. | $C_{2012}^5$ | D. | C${\;}_{2011}^{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com