對(duì)于集合{a1,a2…,an}和常數(shù)a0,定義集合{a1,a2,…,an}相對(duì)a0的“正弦方差W”:W=
sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0
n

設(shè)集合A={
π
4
,
12
,
11π
12
},證明集合A相對(duì)于任何常數(shù)θ的“正弦方差”μ是一個(gè)與常數(shù)θ無(wú)關(guān)的定值
證明:集合A相對(duì)于任何常數(shù)θ的“正弦方差”μ
=
sin2(
π
4
- θ)+sin2(
12
-θ)+sin2
11π
12
- θ )
3

=
1
2
-
1
2
cos
 
(
π
2
-2θ)+
1
2
-
1
2
cos (  
6
-2θ)+
1
2
cos(
6
-2 θ )-
1
2
3

=
1-sin2θ+cos
π
6
cos2θ+sin
π
6
sin2θ-cos
π
6
cos2θ+sin
π
6
sin2θ
6

=
1
6
,是一個(gè)與常數(shù)θ無(wú)關(guān)的定值.
原式得證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合{a1,a2…,an}和常數(shù)a0,定義集合{a1,a2,…,an}相對(duì)a0的“正弦方差W”:W=
sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0
n

設(shè)集合A={
π
4
,
12
,
11π
12
},證明集合A相對(duì)于任何常數(shù)θ的“正弦方差”μ是一個(gè)與常數(shù)θ無(wú)關(guān)的定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合{a1,a2,…,an}和常數(shù)a0,定義:W=
sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)
n
為集合{a1,a2,…,an}相對(duì)a0的“正弦方差”,則集合{
π
2
,
6
,
6
}
相對(duì)a0的“正弦方差”為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省長(zhǎng)沙市雅禮中學(xué)高三第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

對(duì)于集合{a1,a2…,an}和常數(shù)a,定義集合{a1,a2,…,an}相對(duì)a的“正弦方差W”:W=
設(shè)集合A={,},證明集合A相對(duì)于任何常數(shù)θ的“正弦方差”μ是一個(gè)與常數(shù)θ無(wú)關(guān)的定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南通市如皋市白蒲高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

對(duì)于集合{a1,a2,…,an}和常數(shù)a,定義:為集合{a1,a2,…,an}相對(duì)a的“正弦方差”,則集合相對(duì)a的“正弦方差”為   

查看答案和解析>>

同步練習(xí)冊(cè)答案