已知函數(shù)
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間的最小值

(1),(2)-7

解析試題分析:(1).  2分
,解得  4分
的單調(diào)遞減區(qū)間:,  6分
(2)






2

 

 
+
 



極小


     9分
,得,     11分
     13分
考點(diǎn):函數(shù)單調(diào)性與最值
點(diǎn)評:函數(shù)求最值的步驟:函數(shù)求導(dǎo)數(shù),在定義域內(nèi)由導(dǎo)數(shù)得到單調(diào)區(qū)間,由單調(diào)區(qū)間確定函數(shù)的極值,將極值與閉區(qū)間邊界值比較得到最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線y = f(x)的切線的斜率為負(fù)數(shù)時,求在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求的最小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設(shè),求的最大值的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x3x2-2x(a∈R).
(1)當(dāng)a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè)關(guān)于x的不等式的解集為M,且集合,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求c的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,判斷的大小,并說明理由;
(3)求證:當(dāng)時,關(guān)于的方程:在區(qū)間上總有兩個不同的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)當(dāng)時,討論函數(shù)的單調(diào)性:
(Ⅱ)若函數(shù)的圖像上存在不同兩點(diǎn),,設(shè)線段的中點(diǎn)為,使得在點(diǎn)處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”.
試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案