已知函數(shù)f(x)=-x3x2-2x(a∈R).
(1)當a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實數(shù)a的取值范圍;
(3)若過點可作函數(shù)y=f(x)圖象的三條不同切線,求實數(shù)a的取值范圍.

(1) 增區(qū)間為(1,2),減區(qū)間為(-∞,1)和(2,+∞). (2) (-1,8); (3) (2,+∞).

解析試題分析:(1)當a=3時,f(x)=-x3x2-2x,得f′(x)=-x2+3x-2.
因為f′(x)=-x2+3x-2=-(x-1)(x-2),
所以當1<x<2時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當x<1或x>2時,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,2),單調(diào)遞減區(qū)間為(-∞,1)和(2,+∞).
(2)方法一:由f(x)=-x3x2-2x,得f′(x)=-x2+ax-2.
因為對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,
即對于任意x∈[1,+∞)都有-x2+ax-2<2(a-1)成立,即對于任意x∈[1,+∞)都有x2-ax+2a>0成立.
令h(x)=x2-ax+2a,
要使h(x)對任意x∈[1,+∞)都有h(x)>0成立,必須滿足Δ<0,或
即a2-8a<0或所以實數(shù)a的取值范圍為(-1,8).
方法二:由f(x)=-x3x2-2x,得f′(x)=-x2+ax-2.
因為對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,即對于任意x∈[1,+∞)都有f′(x)max<2(a-1).
因為f′(x)=-2-2,其圖象開口向下,對稱軸為x=.
①當<1,即a<2時,f′(x)在[1,+∞)上單調(diào)遞減,所以f′(x)max=f′(1)=a-3.
由a-3<2(a-1),得a>-1,此時-1<a<2;
②當≥1,即a≥2時,f′(x)在上單調(diào)遞增,在上單調(diào)遞減,所以f′(x)max=f′-2.由-2<2(a-1),得0<a<8,此時2≤a<8.
綜上①②可得,實數(shù)a的取值范圍為(-1,8).
(3)設點P是函數(shù)y=f(x)圖象上的切點,則過點P的切線的斜率為k=f′(t)=-t2+at-2,所以過點P的切線方程為y+t3t2+2t=(-t2+at-2)(x-t).
因為點在切線上,所以-t3t2+2t=(-t2+at-2)(0-t),即t3at2=0.
若過點可作函數(shù)y=f(x)圖象的三條不同切線,則方程t3at2=0有三個不同的實數(shù)解.
令g(t)=t3at2,則函數(shù)y=g(t)與t軸有三個不同的交點.
令g′(t)=2t2-at=0,解得t=0或t=
因為g(0)=,g=-a3,所以g=-a3<0,即a>2.
所以實數(shù)a的取值范圍為(2,+∞).
考點:導數(shù)的幾何意義;利用導數(shù)研究函數(shù)的單調(diào)性;二次函數(shù)的性質(zhì);
點評:我們要靈活應用導數(shù)的幾何意義求曲線的切線方程,尤其要注意切點這個特殊點,充分利用切點即在曲線方程上,又在切線方程上,切點處的導數(shù)等于切線的斜率這些條件列出方程組求解。做本題時我們要注意在某點處的切線方程和過某點的切線方程的區(qū)別。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個最高點坐標為(2,2),這個最高點到相鄰最低點的圖像與x軸交于點(5,0).

(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個單位后得到一個偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)判斷奇偶性, 并求出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)
(1)當x>0時,求證:
(2)是否存在實數(shù)a使得在區(qū)間[1.2)上恒成立?若存在,求出a的取值條件;
(3)當時,求證:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)若,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在內(nèi)存在極值,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象經(jīng)過點M(1,4),曲線在點M處的切線恰好與直線垂直。
(1)求實數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),
(I)若,求函數(shù)的極小值,
(Ⅱ)若,設,函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案