【題目】已知函數(shù), .
(Ⅰ)當時,求曲線在處的切線方程;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若函數(shù),當時, 的最大值為,求證: .
【答案】(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)由題,
所以故, ,代入點斜式可得曲線在處的切線方程;
(Ⅱ)由題
(1)當時, 在上單調(diào)遞增. 則函數(shù)在上的最小值是
(2)當時,令,即,令,即
(i)當,即時, 在上單調(diào)遞增,
所以在上的最小值是
(ii)當,即時,由的單調(diào)性可得在上的最小值是
(iii)當,即時, 在上單調(diào)遞減, 在上的最小值是
(Ⅲ)當時,
令,則是單調(diào)遞減函數(shù).
因為, ,
所以在上存在,使得,即
討論可得在上單調(diào)遞增,在上單調(diào)遞減.
所以當時, 取得最大值是
因為,所以由此可證
試題解析:(Ⅰ)因為函數(shù),且,
所以,
所以
所以,
所以曲線在處的切線方程是,即
(Ⅱ)因為函數(shù),所以
(1)當時, ,所以在上單調(diào)遞增.
所以函數(shù)在上的最小值是
(2)當時,令,即,所以
令,即,所以
(i)當,即時, 在上單調(diào)遞增,
所以在上的最小值是
(ii)當,即時, 在上單調(diào)遞減,在上單調(diào)遞增,
所以在上的最小值是
(iii)當,即時, 在上單調(diào)遞減,
所以在上的最小值是
綜上所述,當時, 在上的最小值是
當時, 在上的最小值是
當時, 在上的最小值是
(Ⅲ)因為函數(shù),所以
所以當時,
令,所以是單調(diào)遞減函數(shù).
因為, ,
所以在上存在,使得,即
所以當時, ;當時,
即當時, ;當時,
所以在上單調(diào)遞增,在上單調(diào)遞減.
所以當時, 取得最大值是
因為,所以
因為,所以
所以
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在點處的切線方程;
(2)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(3)當時,證明: (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,分別在軸,軸上運動,,點在線段上,且.
(1)求點的軌跡的方程;
(2)直線與交于,兩點,,若直線,的斜率之和為2,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐S—ABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3
(1)求直線AS與平面ABCD所成角的正弦值;
(2)若線段CD上能找到點E,滿足AE⊥SE,則λ可能的取值有幾種情況?請說明理由;
(3)在(2)的條件下,當λ為所有可能情況的最大值時,線段CD上滿足AE⊥SE的點有兩個,分別記為E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(I)在答題卡上填寫下面的列聯(lián)表,能否有超過的把握認為“獲獎與學生的文理科有關(guān)”?
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
(II)將上述調(diào)査所得的頻率視為概率,現(xiàn)從該校參與競賽的學生中,任意抽取名學生,記“獲獎”學生人數(shù)為,求的分布列及數(shù)學期望.
附表及公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是動點,以為直徑的圓與圓:內(nèi)切.
(1)求的軌跡的方程;
(2)設(shè)是圓與軸的交點,過點的直線與交于兩點,直線交直線于點,求證:三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著銀行業(yè)的不斷發(fā)展,市場競爭越來越激烈,顧客對銀行服務(wù)質(zhì)量的要求越來越高,銀行為了提高柜員員工的服務(wù)意識,加強評價管理,工作中讓顧客對服務(wù)作出評價,評價分為滿意、基本滿意、不滿意三種.某銀行為了比較顧客對男女柜員員工滿意度評價的差異,在下屬的四個分行中隨機抽出40人(男女各半)進行分析比較.對40人一月中的顧客評價“不滿意”的次數(shù)進行了統(tǒng)計,按男、女分為兩組,再將每組柜員員工的月“不滿意”次數(shù)分為5組:,,,,,得到如下頻數(shù)分布表.
分組 | |||||
女柜員 | 2 | 3 | 8 | 5 | 2 |
男柜員 | 1 | 3 | 9 | 4 | 3 |
(1)在答題卡所給的坐標系中分別畫出男、女柜員員工的頻率分布直方圖;分別求出男、女柜員員工的月平均“不滿意”次數(shù)的估計值,試根據(jù)估計值比較男、女柜員員工的滿意度誰高?
(2)在抽取的40名柜員員工中:從“不滿意”次數(shù)不少于20的員工中隨機抽取3人,并用X表示隨機抽取的3人中女柜員工的人數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com