【題目】若函數(shù), ,對于給定的非零實數(shù),總存在非零常數(shù),使得定義域內(nèi)的任意實數(shù),都有恒成立,此時的類周期,函數(shù)上的級類周期函數(shù).若函數(shù)是定義在區(qū)間內(nèi)的2級類周期函數(shù),且,當(dāng)時, 函數(shù).若, ,使成立,則實數(shù)的取值范圍是(

A. B. C. D.

【答案】B

【解析】

根據(jù)題意,由函數(shù)f(x)在[0,2)上的解析式,分析可得函數(shù)f(x)在[0,2)上的最值,

結(jié)合a級類周期函數(shù)的含義,分析可得f(x)在[6,8]上的最大值,對于函數(shù)g(x),對其

求導(dǎo)分析可得g(x)在區(qū)間(0,+∞)上的最小值;進而分析,將原問題轉(zhuǎn)化為g(x)min

≤f(x)max的問題,即可得+m≤8,解可得m的取值范圍,即可得答案.

根據(jù)題意,對于函數(shù)f(x),當(dāng)x∈[0,2)時,

分析可得:當(dāng)0≤x≤1時,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,

當(dāng)1<x<2時,f(x)=f(2﹣x),函數(shù)f(x)的圖象關(guān)于直線x=1對稱,則此時有﹣

f(x)<,

又由函數(shù)y=f(x)是定義在區(qū)間[0,+∞)內(nèi)的2級類周期函數(shù),且T=2;

則在∈[6,8)上,f(x)=23f(x﹣6),則有﹣12≤f(x)≤4,

f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,

則函數(shù)f(x)在區(qū)間[6,8]上的最大值為8,最小值為﹣12;

對于函數(shù) ,有g′(x)=﹣+x+1=,

分析可得:在(0,1)上,g′(x)<0,函數(shù)g(x)為減函數(shù),

在(1,+∞)上,g′(x)>0,函數(shù)g(x)為增函數(shù),

則函數(shù)g(x)在(0,+∞)上,由最小值f(1)=+m,

x1∈[6,8],x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,

必有g(x)min≤f(x)max,即+m≤8,

解可得m≤,即m的取值范圍為(﹣∞,];

故答案為:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(

A.若樣本的平均數(shù)為5,標(biāo)準(zhǔn)差為1,則樣本的平均數(shù)為11,標(biāo)準(zhǔn)差為2

B.身高和體重具有相關(guān)關(guān)系

C.現(xiàn)有高一學(xué)生30名,高二學(xué)生40名,高三學(xué)生30名,若按分層抽樣從中抽取20名學(xué)生,則抽取高三學(xué)生6

D.兩個變量間的線性相關(guān)性越強,則相關(guān)系數(shù)的值越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1)若函數(shù)為增函數(shù),求實數(shù)的值;

2)若函數(shù)為偶函數(shù),對于任意,任意,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.對立事件一定是互斥事件,互斥事件不一定是對立事件

B.事件,同時發(fā)生的概率一定比,恰有一個發(fā)生的概率小

C.,則事件是對立事件

D.事件中至少有一個發(fā)生的概率一定比,中恰有一個發(fā)生的概率大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次數(shù)學(xué)考試中,小江的成績在90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.計算:

1)小江在此次數(shù)學(xué)考試中取得80分及以上的概率;

2)小江考試及格(成績不低于60分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分如下圖所示在直三棱柱ABCA1B1C1AC=3,BC=4AB=5,AA1=4點D是AB的中點

求證ACBC1;

求證AC1平面CDB1;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:

男生

女生

總計

身高低于170cm

8

24

32

身高不低于170cm

26

6

32

總計

34

30

64

附:K2

PK2k0

 0.050

 0.010

 0.001

 k0

3.841

6.635

 10.828

由此得出的正確結(jié)論是(

A.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“身高與性別無關(guān)”

B.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“身高與性別有關(guān)”

C.99.9%的把握認(rèn)為“身高與性別無關(guān)”

D.99.9%的把握認(rèn)為“身高與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案