現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.
(1);(2);(3)分布列詳見解析,.
解析試題分析:本題主要考查隨機(jī)事件的概率、獨(dú)立重復(fù)試驗(yàn)、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、計(jì)算能力.第一問,先通過擲骰子游戲,求出每個(gè)人去參加甲游戲和去參加乙游戲的概率,再用獨(dú)立重復(fù)試驗(yàn)的計(jì)算公式計(jì)算4個(gè)人中恰有2人去參加甲游戲的概率;第二問,用獨(dú)立重復(fù)試驗(yàn)的計(jì)算公式計(jì)算出去參加甲的人數(shù)為3人和4人的概率之和即為所求;第三問,根據(jù)前2問的分析,得出的3個(gè)可能取值0,2,4,分別求出概率值,列出分布列,利用求數(shù)學(xué)期望.
依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件(i=0,1,2,3,4),則
(1)這4個(gè)人中恰有2人去參加甲游戲的概率 3分
(2)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則,
由于與互斥,故
所以,這4個(gè)人去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為. 7分
(3)ξ的所有可能取值為0,2,4.由于與互斥,與互斥,故
,
。
所以ξ的分布列是ξ 0 2 4 P
隨機(jī)變量ξ的數(shù)學(xué)期望 12分
考點(diǎn):隨機(jī)事件的概率、獨(dú)立重復(fù)試驗(yàn)、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.
(注:若三個(gè)數(shù)滿足 ,則稱為這三個(gè)數(shù)的中位數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從名男生和名女生中任選人參加演講比賽,
①求所選人都是男生的概率;
②求所選人恰有名女生的概率;
③求所選人中至少有名女生的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一種電腦屏幕保護(hù)畫面,只有符號(hào)隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)之一,其中出現(xiàn)的概率為p,出現(xiàn)的概率為q,若第k次出現(xiàn),則記;出現(xiàn),則記,令.
(1)當(dāng)時(shí),求的分布列及數(shù)學(xué)期望.
(2)當(dāng)時(shí),求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從某學(xué)校的名男生中隨機(jī)抽取名測(cè)量身高,被測(cè)學(xué)生身高全部介于cm和cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[,),第二組[,),…,第八組[,],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人.
(1)求第七組的頻率并估計(jì)該校800名男生中身高在cm以上(含cm)的人數(shù);
(2)從第六組和第八組的男生中隨機(jī)抽取兩名男生,記他們的身高分別為,事件{},求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是某市3月1日至14日空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于1 00表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇3月1曰至3月1 3日中某一天到達(dá)該市,并停留2天.
(l)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(2)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
現(xiàn)有甲、乙、丙三人參加某電視臺(tái)的應(yīng)聘節(jié)目《非你莫屬》,若甲應(yīng)聘成功的概率為,乙、丙應(yīng)聘成功的概率均為,(0<t<2),且三個(gè)人是否應(yīng)聘成功是相互獨(dú)立的.
(1)若乙、丙有且只有一個(gè)人應(yīng)聘成功的概率等于甲應(yīng)聘成功的概率,求t的值;
(2)記應(yīng)聘成功的人數(shù)為,若當(dāng)且僅當(dāng)為=2時(shí)概率最大,求E()的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知離散型隨機(jī)變量ξ1的概率分布為
ξ1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P |
ξ2 | 3.7 | 3.8 | 3.9 | 4 | 4.1 | 4.2 | 4.3 |
P |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com