【題目】已知函數(shù).
(I)求函數(shù)的單調區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)在(II)的條件下,對任意的,求證:.
【答案】(I)當時,在上單調遞增,無單調遞減區(qū)間,當時,的單調遞增區(qū)間為,單調遞減區(qū)間為;(II);(III)證明見解析.
【解析】試題分析:(I)利用時為單調增函數(shù),時為單調減函數(shù)這一性質來分情況討論題中單調區(qū)間問題;(II)根據(jù)函數(shù)單調性與最值,若在上恒成立,則函數(shù)的最大值小于或等于零.當時,在上單調遞增,,說明時,不合題意舍去.當時,的最大值小于零.但在上恒成立,所以只能等于零.令即可求得答案;(III)首先將的表達式表達出來,化簡轉化為的形式,再根據(jù)(II)的結論得到,后逐步化簡,原命題得證.
試題解析:(I),
當時,恒成立,則函數(shù)在上單調遞增,無單調遞減區(qū)間;
當時,由,得,由,
得,此時的單調遞增區(qū)間為,單調遞減區(qū)間為.
(II)由(I)知:當時,在上遞增,,顯然不成立;
當時,,只需即可,
令,則,
在上單調遞減,在上單調遞增.
.
對恒成立,也就是對恒成立,
,解得,若在上恒成立,則.
(III)證明:,
由(II)得在上恒成立,即,當且僅當時取等號,
又由得,所以有,即.
則,
則原不等式成立. ………(12分)
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(, 為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應的參數(shù),射線與曲線交于點.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)若點, 在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:
(1)令,利用給出的參考數(shù)據(jù)求出關于的回歸方程.(,精確到0.1)
參考數(shù)據(jù):,,
其中,
(2)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量不高于20微克時對人體無害,為了放心食用該蔬菜,請估計至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,( 為常數(shù))
(1)若在處的切線方程為(為常數(shù)),求的值;
(2)設函數(shù)的導函數(shù)為,若存在唯一的實數(shù),使得與同時成立,求實數(shù)的取值范圍;
(3)令,若函數(shù)存在極值,且所有極值之和大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇圓滿落幕了,相關話題在網(wǎng)絡上引起了網(wǎng)友們的高度關注,為此,21財經(jīng)APP聯(lián)合UC推出“一帶一路”大數(shù)據(jù)微報告,在全國抽取的70千萬網(wǎng)民中(其中為高學歷)有20千萬人對此關注(其中為高學歷).
(1)根據(jù)以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表;
(2)根據(jù)列聯(lián)表,用獨立性檢驗的方法分析,能否有的把握認為“一帶一路”的關注度與學歷有關系?
高學歷(千萬人) | 不是高學歷(千萬人) | 合計 | |
關注 | |||
不關注 | |||
合計 |
參考公式: 統(tǒng)計量的表達式是,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出的普通方程和的直角坐標方程;
(2)設點在上,點在上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4月16日摩拜單車進駐大連市旅順口區(qū),綠色出行引領時尚,旅順口區(qū)對市民進行“經(jīng)常使用共享單車與年齡關系”的調查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.
(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:
年輕人 | 非年輕人 | 合計 | |
經(jīng)常使用單車用戶 | |||
不常使用單車用戶 | |||
合計 |
(2)請根據(jù)(1)中的列聯(lián)表,計算值并判斷能否有的把握認為經(jīng)常使用共享單車與年齡有關?
(附:
當時,有的把握說事件與有關;當時,有的把握說事件與有關;當時,認為事件與是無關的)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某教師有相同的語文參考書3本,相同的數(shù)學參考書4本,從中取出4本贈送給4位學生,每位學生1本,則不同的贈送方法共有( )
A. 15種 B. 20種 C. 48種 D. 60種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com