分析:(Ⅰ)根據(jù)題意求得a
1=1,a
2 =
,a
3 =
,再由數(shù)列{a
n}是等差數(shù)列,求得得 m=8.再根據(jù)二項(xiàng)式定理求得
(1+x)m展開式的中間項(xiàng).
(Ⅱ)由(Ⅰ)可得,a
n=3n-2.求得當(dāng)n=2或3時(shí),
+++…+=
>
,猜測:當(dāng)n≥2時(shí),
+++…+>
,并用數(shù)學(xué)歸納法進(jìn)行證明.
解答:解:(Ⅰ)∵
(1+x)m=1+
(
x)+
•
(x)2+
•(x)3+…+
•(x)m,
a
1,a
2,a
3是
(1+x)m展開式的前三項(xiàng)的系數(shù),∴a
1=1,a
2 =
,a
3 =
.
又?jǐn)?shù)列{a
n}是等差數(shù)列,∴2a
2=a
1+a
3,解得 m=8,或m=1(舍去).
故
(1+x)m展開式的中間項(xiàng)為 T
5=
•
(x)4=
x
4.
(Ⅱ)由(Ⅰ)可得,a
n=3n-2.
當(dāng)n=2時(shí),
+++…+=
++=
++=
>
.
當(dāng)n=3時(shí),
+++…+=
++…+
=
+++
+++
=
+(
++)+(
++)>
.
猜測:當(dāng)n≥2時(shí),
+++…+>
.
下面用數(shù)學(xué)歸法證明:
當(dāng)n=2時(shí),由上可得,結(jié)論成立.
假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即
+++…+>
,
則當(dāng)n=k+1時(shí),
+++…+=
+++…+=(
+++…+ )+(
+
+…+
-
)
>
+(
+
+…+
-
)>
+
-
=
+
(2k+1)(3k-2)-[3(k+1)2-2] |
[3(k+1)2-2]•(3k-2) |
=
+
3k2-7k-3 |
[3(k+1)2-2]•(3k-2) |
.
再由 k≥3 可得 3k
2-7k-3>0,∴
3k2-7k-3 |
[3(k+1)2-2]•(3k-2) |
>0,
∴
+++…+>
,
由此可得,當(dāng)n≥2時(shí),試比較
+++…+>
.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,用數(shù)學(xué)歸納法證明不等式,注意利用假設(shè),證明n=k+1時(shí),不等式成立,是解題的關(guān)鍵和難點(diǎn),屬于中檔題.