過(guò)點(diǎn)A(0,a) (a > 0), 且和點(diǎn)B(2a,2a)的距離為a的兩條直線方程是4x - 3y + 3a = 0或_______.又過(guò)點(diǎn)B向這兩直線所作垂線的垂足連線方程是_______.(注:以上答案用一般式表示)
答案:y-a=0;2x+y-5a=0
解析:

解: 設(shè)過(guò)點(diǎn)A(0,a)的方程為kx - y + a = 0

    則 = a

    從而 k = 0,  k = 

    所求方程為 y = a, y - a = (x - 0)

    又 BC的方程為 3x + 4y - 14a = 0

   由

    得交點(diǎn)C()

    但點(diǎn)D坐標(biāo)為(2a,a)

     所以 CD方程為  2x + y - 5a = 0


提示:

設(shè)出過(guò)點(diǎn)A(0,a)的直線方程, 由點(diǎn)B(2a,2a)到直線的距離求斜率, 再求在兩直線 上垂足的坐標(biāo), 最后利用兩點(diǎn)式寫(xiě)出方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知雙曲線
x2
a2
-
y2
b2
=1 (a>0,b>0)
的右準(zhǔn)線交x軸于A,虛軸的下端點(diǎn)為B,過(guò)雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于P,過(guò)點(diǎn)A、B的直線與FP相交于點(diǎn)D,且2
OD
=
OF
+
OP
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求雙曲線的離心率;
(Ⅱ)若a=2,過(guò)點(diǎn)(0,-2)的直線l交該雙曲線于不同兩點(diǎn)M、N,求
OM
ON
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,求圓的方程:

(1)過(guò)點(diǎn)A(1,1),B(-1,3)且面積最小;

(2)圓心在直線2xy-7=0上且與y軸交于點(diǎn)A(0,-4),B(0,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過(guò)點(diǎn)P(,).

(1)求橢圓C的方程;

(2)設(shè)Q(x0,y0)(x0y00)為橢圓C上一點(diǎn).過(guò)點(diǎn)Qx軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過(guò)點(diǎn)AAE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn),作直線QG,問(wèn)這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省高考真題 題型:解答題

在平面直角坐標(biāo)系xOy上,給定拋物線L:y=x2,實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過(guò)點(diǎn)A(p0,p0)(p0≠0)作L的切線教y軸于點(diǎn)B。證明:對(duì)線段AB上任一點(diǎn)Q(p,q)有φ(p,q)=;
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0。過(guò)M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,p12),E′(p2,p22),l1,l2與y軸分別交與F,F(xiàn)'。線段EF上異于兩端點(diǎn)的點(diǎn)集記為X。證明:M(a,b)∈X|P1|>|P2|φ(a,b)=;
(3)設(shè)D={(x,y)|y≤x-1,y≥(x+1)2-},當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax)。

查看答案和解析>>

同步練習(xí)冊(cè)答案