已知函數(shù)數(shù)學(xué)公式,(x>0).
(Ⅰ)當(dāng)0<a<b,且f(a)=f(b)時(shí),求證:ab>1;
(Ⅱ)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)閇a,b]時(shí),值域?yàn)閇ma,mb](m≠0),求m的取值范圍.

(I)證明:∵x>0,∴
∴f(x)在(0,1)上為減函數(shù),在(1,+∞)上是增函數(shù).
由0<a<b,且f(a)=f(b),可得 0<a<1<b和,即
∴2ab=a+b>
,即ab>1.
(II)解:不存在滿足條件的實(shí)數(shù)a,b.
若存在滿足條件的實(shí)數(shù)a,b,使得函數(shù)y=的定義域、值域都是[a,b],
則a>0,
①當(dāng)a,b∈(0,1)時(shí),在(0,1)上為減函數(shù).
,即,解得a=b.
故此時(shí)不存在適合條件的實(shí)數(shù)a,b.
②當(dāng)a,b∈[1,+∞)時(shí),在(1,+∞)上是增函數(shù).
,即
此時(shí)a,b是方程x2-x+1=0的根,此方程無(wú)實(shí)根.
故此時(shí)不存在適合條件的實(shí)數(shù)a,b.
③當(dāng)a∈(0,1),b∈[1,+∞)時(shí),由于1∈[a,b],而f(1)=0∉[a,b],
故此時(shí)不存在適合條件的實(shí)數(shù)a,b.
綜上可知,不存在適合條件的實(shí)數(shù)a,b.
(III)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)閇a,b]時(shí),值域?yàn)閇ma,mb].
則a>0,m>0.
①當(dāng)a,b∈(0,1)時(shí),由于f(x)在(0,1)上是減函數(shù),故
此時(shí)刻得a,b異號(hào),不符合題意,所以a,b不存在.
②當(dāng)a∈(0,1)或b∈[1,+∞)時(shí),由( II)知0在值域內(nèi),值域不可能是[ma,mb],所以a,b不存在.
故只有a,b∈[1,+∞).
在[1,+∞)上是增函數(shù),
,即
∴a,b是方程mx2-x+1=0的兩個(gè)根,即關(guān)于x的方程mx2-x+1=0有兩個(gè)大于1的實(shí)根.
設(shè)這兩個(gè)根為x1,x2,則x1+x2=,x1•x2=
,即
解得
故m的取值范圍是
分析:(I)確定函數(shù)解析式,利用函數(shù)的單調(diào)性,可得,利用基本不等式,即可得出結(jié)論;
(II)分類(lèi)討論,若存在滿足條件的實(shí)數(shù)a,b,使得函數(shù)y=的定義域、值域都是[a,b],從而可得結(jié)論;
(III)分類(lèi)討論,若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)閇a,b]時(shí),值域?yàn)閇ma,mb],即可得出結(jié)論.
點(diǎn)評(píng):本題考查函數(shù)解析式的運(yùn)用,考查基本不等式,考查分類(lèi)討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知函數(shù)y=2cos x(0≤x≤1 000π)的圖象和直線y=2圍成一個(gè)封閉的平面圖形,則這個(gè)封閉圖形的面積是
2000π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)y=sin(ωx+φ)(ω>0,|φ|<
π2
)
的部分圖象如圖所示,則點(diǎn)P(ω,φ)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出已知函數(shù)y=
1(x>0)
0(x=0)
-1(x<0).
輸入x的值,求y的值程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=0.3x-log2x,若f(a)f(b)f(c)>0且a,b,c是公差為正的等差數(shù)列的連續(xù)三項(xiàng),x0是函數(shù)y=f(x)的一個(gè)零點(diǎn),則下列關(guān)系式一定不成立的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•烏魯木齊一模)已知函數(shù)f(x)=
0,x≤0
ex,x>0
,則使函數(shù)g(x)=f(x)+x-m有零點(diǎn)的實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案